A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-021-02990-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
- Hui Hu & Jianfeng Zhang & Tao Li, 2020. "A Comparative Study of VMD-Based Hybrid Forecasting Model for Nonstationary Daily Streamflow Time Series," Complexity, Hindawi, vol. 2020, pages 1-21, July.
- Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
- Xinxin He & Jungang Luo & Peng Li & Ganggang Zuo & Jiancang Xie, 2020. "A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 865-884, January.
- Xinxin He & Jungang Luo & Ganggang Zuo & Jiancang Xie, 2019. "Daily Runoff Forecasting Using a Hybrid Model Based on Variational Mode Decomposition and Deep Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1571-1590, March.
- Zaher Mundher Yaseen & Ozgur Kisi & Vahdettin Demir, 2016. "Enhancing Long-Term Streamflow Forecasting and Predicting using Periodicity Data Component: Application of Artificial Intelligence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4125-4151, September.
- Ozgur Kisi, 2015. "Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5109-5127, November.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017.
"Predicting recessions with boosted regression trees,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions With Boosted Regression Trees," Working Papers 2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Yuri B. Kirsta & Ol’ga V. Lovtskaya, 2021. "Good-quality Long-term Forecast of Spring-summer Flood Runoff for Mountain Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 811-825, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bulent Haznedar & Huseyin Cagan Kilinc, 2022. "A Hybrid ANFIS-GA Approach for Estimation of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4819-4842, September.
- Peiqiang Gao & Wenfeng Du & Qingwen Lei & Juezhi Li & Shuaiji Zhang & Ning Li, 2023. "NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1481-1497, March.
- Wei Li & Xiaosheng Wang & Shujiang Pang & Haiying Guo, 2022. "A Runoff Prediction Model Based on Nonhomogeneous Markov Chain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1431-1442, March.
- M. Rajesh & Sachdeva Anishka & Pansari Satyam Viksit & Srivastav Arohi & S. Rehana, 2023. "Improving Short-range Reservoir Inflow Forecasts with Machine Learning Model Combination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 75-90, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paulino José Garcia Nieto & Esperanza García Gonzalo & Fernando Sanchez Lasheras & Antonio Bernardo Sánchez, 2020. "A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
- Zhennan Liu & Qiongfang Li & Jingnan Zhou & Weiguo Jiao & Xiaoyu Wang, 2021. "Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2921-2940, July.
- Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017.
"Predicting recessions with boosted regression trees,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions With Boosted Regression Trees," Working Papers 2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
- Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
- Yahia Mutalib Tofiq & Sarmad Dashti Latif & Ali Najah Ahmed & Pavitra Kumar & Ahmed El-Shafie, 2022. "Optimized Model Inputs Selections for Enhancing River Streamflow Forecasting Accuracy Using Different Artificial Intelligence Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5999-6016, December.
- Lahiri, Kajal & Yang, Cheng, 2022.
"Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Kajal Lahiri & Cheng Yang, 2021. "Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York," CESifo Working Paper Series 9365, CESifo.
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
- Emrich Eike & Pierdzioch Christian, 2016. "Public Goods, Private Consumption, and Human Capital: Using Boosted Regression Trees to Model Volunteer Labour Supply," Review of Economics, De Gruyter, vol. 67(3), pages 263-283, December.
- Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Pierdzioch Christian & Gupta Rangan, 2020.
"Uncertainty and Forecasts of U.S. Recessions,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
- Christian Pierdzioch & Rangan Gupta, 2017. "Uncertainty and Forecasts of U.S. Recessions," Working Papers 201732, University of Pretoria, Department of Economics.
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Yani Lian & Jungang Luo & Wei Xue & Ganggang Zuo & Shangyao Zhang, 2022. "Cause-driven Streamflow Forecasting Framework Based on Linear Correlation Reconstruction and Long Short-term Memory," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1661-1678, March.
- María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez & Antonio Guillamón & Alberto Falces & Ana García-Garre & Antonio Gabaldón, 2019. "Integration of Demand Response and Short-Term Forecasting for the Management of Prosumers’ Demand and Generation," Energies, MDPI, vol. 13(1), pages 1-31, December.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
More about this item
Keywords
Streamflow estimation; Decomposition-ensemble model; Variational mode decomposition; Back-propagation neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:15:d:10.1007_s11269-021-02990-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.