Correlated daily time series and forecasting in the M4 competition
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2019.02.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Frederick R. Macaulay, 1931. "Appendices to "The Smoothing of Time Series"," NBER Chapters, in: The Smoothing of Time Series, pages 118-169, National Bureau of Economic Research, Inc.
- Frederick R. Macaulay, 1931. "The Smoothing of Economic Time Series, Curve Fitting and Graduation," NBER Chapters, in: The Smoothing of Time Series, pages 31-42, National Bureau of Economic Research, Inc.
- Frederick R. Macaulay, 1931. "The Smoothing of Time Series," NBER Books, National Bureau of Economic Research, Inc, number maca31-1.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Frederick R. Macaulay, 1931. "Introduction to "The Smoothing of Time Series"," NBER Chapters, in: The Smoothing of Time Series, pages 17-30, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
- Viv B. Hall & Peter Thomson, 2021.
"Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
- Hall, Viv B & Thomson, Peter, 2020. "Does Hamilton’s OLS regression provide a “better alternative” to the Hodrick-Prescott filter? A New Zealand Business Cycle Perspective," Working Paper Series 21070, Victoria University of Wellington, School of Economics and Finance.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Hall, Viv & Thomson, Peter & McKelvie, Stuart, 2015. "On trend robustness and end-point issues for New Zealand’s stylised business cycle facts," Working Paper Series 18867, Victoria University of Wellington, School of Economics and Finance.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Dagum Estela Bee & Luati Alessandra, 2004. "Relationship between Local and Global Nonparametric Estimators Measures of Fitting and Smoothing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-18, May.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Shouvik Chakraborty, 2012. "Is Export Expansion of Manufactured Goods an Escape Route from Terms of Trade Deterioration of Developing Countries?," Journal of South Asian Development, , vol. 7(2), pages 81-108, October.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Alessandra Luati & Tommaso Proietti, 2011.
"On the equivalence of the weighted least squares and the generalised least squares estimators, with applications to kernel smoothing,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 851-871, August.
- Luati, Alessandra & Proietti, Tommaso, 2008. "On the Equivalence of the Weighted Least Squares and the Generalised Least Squares Estimators, with Applications to Kernel Smoothing," MPRA Paper 8910, University Library of Munich, Germany.
- Hall, Viv & Thomson, Peter & McKelvie, Stuart, 2015. "On trend robustness and end-point issues for New Zealand’s stylised business cycle facts," Working Paper Series 3761, Victoria University of Wellington, School of Economics and Finance.
- Viv B. Hall & Peter Thomson & Stuart McKelvie, 2017. "On the robustness of stylised business cycle facts for contemporary New Zealand," New Zealand Economic Papers, Taylor & Francis Journals, vol. 51(3), pages 193-216, September.
More about this item
Keywords
Forecasting competitions; Time series; Correlation; Data leakage; Ensembling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:36:y:2020:i:1:p:121-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.