IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i3p1047-1058.html
   My bibliography  Save this article

Distributionally robust optimal power flow with contextual information

Author

Listed:
  • Esteban-Pérez, Adrián
  • Morales, Juan M.

Abstract

In this paper, we develop a distributionally robust chance-constrained formulation of the Optimal Power Flow problem (OPF) whereby the system operator can leverage contextual information. For this purpose, we exploit an ambiguity set based on probability trimmings and optimal transport through which the dispatch solution is protected against the incomplete knowledge of the relationship between the OPF uncertainties and the context that is conveyed by a sample of their joint probability distribution. We provide a tractable reformulation of the proposed distributionally robust chance-constrained OPF problem under the popular conditional-value-at-risk approximation. By way of numerical experiments run on a modified IEEE-118 bus network with wind uncertainty, we show how the power system can substantially benefit from taking into account the well-known statistical dependence between the point forecast of wind power outputs and its associated prediction error. Furthermore, the experiments conducted also reveal that the distributional robustness conferred on the OPF solution by our probability-trimmings-based approach is superior to that bestowed by alternative approaches in terms of expected cost and system reliability.

Suggested Citation

  • Esteban-Pérez, Adrián & Morales, Juan M., 2023. "Distributionally robust optimal power flow with contextual information," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1047-1058.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1047-1058
    DOI: 10.1016/j.ejor.2022.10.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & McCord, Christopher & Sturt, Bradley, 2023. "Dynamic optimization with side information," European Journal of Operational Research, Elsevier, vol. 304(2), pages 634-651.
    2. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    3. Weijun Xie & Shabbir Ahmed, 2020. "Bicriteria Approximation of Chance-Constrained Covering Problems," Operations Research, INFORMS, vol. 68(2), pages 516-533, March.
    4. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    5. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvaro Porras & Concepción Domínguez & Juan Miguel Morales & Salvador Pineda, 2023. "Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1454-1469, November.
    2. Li, Haobin & Lu, Xinhui & Zhou, Kaile & Shao, Zhen, 2024. "Distributionally robust optimal dispatching method for integrated energy system with concentrating solar power plant," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Ruru & Gao, Jinwu & Gao, Feng, 2022. "Robust ocean zoning for conservation, fishery and marine renewable energy with co-location strategy," Applied Energy, Elsevier, vol. 328(C).
    2. Yin, Yunqiang & Luo, Zunhao & Wang, Dujuan & Cheng, T.C.E., 2023. "Wasserstein distance‐based distributionally robust parallel‐machine scheduling," Omega, Elsevier, vol. 120(C).
    3. Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.
    4. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    5. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    6. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    7. Romain Dupin & Laura Cavalcante & Ricardo J. Bessa & Georges Kariniotakis & Andrea Michiorri, 2020. "Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation," Energies, MDPI, vol. 13(12), pages 1-21, June.
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    10. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    11. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    12. Dordonnat, V. & Pichavant, A. & Pierrot, A., 2016. "GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1005-1011.
    13. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    14. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    15. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    16. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    17. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    18. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    19. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    20. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1047-1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.