IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p19-d1304656.html
   My bibliography  Save this article

Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series

Author

Listed:
  • Alexandros Menelaos Tzortzis

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Sotiris Pelekis

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Evangelos Spiliotis

    (Forecasting and Strategy Unit, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Evangelos Karakolis

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Spiros Mouzakitis

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • John Psarras

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

  • Dimitris Askounis

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 157 72 Athens, Greece)

Abstract

Short-term load forecasting (STLF) is crucial for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. Various forecasting approaches have been proposed for improving STLF, including neural network (NN) models which are trained using data from multiple electricity demand series that may not necessarily include the target series. In the present study, we investigate the performance of a special case of STLF, namely transfer learning (TL), by considering a set of 27 time series that represent the national day-ahead electricity demand of indicative European countries. We employ a popular and easy-to-implement feed-forward NN model and perform a clustering analysis to identify similar patterns among the load series and enhance TL. In this context, two different TL approaches, with and without the clustering step, are compiled and compared against each other as well as a typical NN training setup. Our results demonstrate that TL can outperform the conventional approach, especially when clustering techniques are considered.

Suggested Citation

  • Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:19-:d:1304656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seung-Min Jung & Sungwoo Park & Seung-Won Jung & Eenjun Hwang, 2020. "Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    2. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    3. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    4. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    2. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    3. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    4. Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
    5. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
    6. Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
    7. Sun, Bixuan & Eryilmaz, Derya & Konidena, Rao, 2018. "Transparency in Long-Term Electric Demand Forecast: A Perspective on Regional Load Forecasting," 2018 Annual Meeting, August 5-7, Washington, D.C. 274396, Agricultural and Applied Economics Association.
    8. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    9. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    10. García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
    11. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    12. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    13. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    14. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    15. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    16. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    18. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    19. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    20. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    21. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:19-:d:1304656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.