IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v24y2008i4p645-658.html
   My bibliography  Save this article

An evaluation of methods for very short-term load forecasting using minute-by-minute British data

Author

Listed:
  • Taylor, James W.

Abstract

This paper uses minute-by-minute British electricity demand observations to evaluate methods for prediction between 10 and 30Â minutes ahead. Such very short lead times are important for the real-time scheduling of electricity generation. We consider methods designed to capture both the intraday and the intraweek seasonal cycles in the data, including ARIMA modelling, an adaptation of Holt-Winters' exponential smoothing, and a recently proposed exponential smoothing method that focuses on the evolution of the intraday cycle. We also consider methods that do not attempt to model the seasonality, as well as an approach based on weather forecasts. For very short-term prediction, the best results were achieved using the Holt-Winters' adaptation and the new intraday cycle exponential smoothing method. Looking beyond the very short-term, we found that combining the method based on weather forecasts with the Holt-Winters' adaptation resulted in forecasts that outperformed all other methods beyond about an hour ahead.

Suggested Citation

  • Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
  • Handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:645-658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00070-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    2. Alves da Silva, Alexandre P. & Ferreira, Vitor H. & Velasquez, Roberto M.G., 2008. "Input space to neural network based load forecasters," International Journal of Forecasting, Elsevier, vol. 24(4), pages 616-629.
    3. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    4. Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
    7. Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
    8. Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005. "Prediction intervals for exponential smoothing using two new classes of state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
    9. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    10. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    11. Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
    12. Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
    13. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    14. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    15. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    16. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    17. J W Taylor & S Majithia, 2000. "Using combined forecasts with changing weights for electricity demand profiling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 72-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    2. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    3. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    4. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    5. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    6. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    7. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    8. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    9. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    10. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    11. Tristan Launay & Anne Philippe & Sophie Lamarche, 2015. "Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 361-385, June.
    12. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    13. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    14. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    15. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    16. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    17. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    18. repec:qut:auncer:wp103 is not listed on IDEAS
    19. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    20. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:24:y:2008:i:4:p:645-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.