A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Xiande & Xie, Jinxing & Leung, Janny, 2002. "The impact of forecasting model selection on the value of information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 142(2), pages 321-344, October.
- Lo, Tammy, 1994. "An expert system for choosing demand forecasting techniques," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 5-15, January.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Thomassey, Sebastien & Happiette, Michel & Castelain, Jean-Marie, 2005. "A global forecasting support system adapted to textile distribution," International Journal of Production Economics, Elsevier, vol. 96(1), pages 81-95, April.
- Xiao, Tiaojun & Yang, Danqin, 2008. "Price and service competition of supply chains with risk-averse retailers under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 114(1), pages 187-200, July.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
- Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
- Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
- Geurts, Michael D. & Patrick Kelly, J., 1986. "Forecasting retail sales using alternative models," International Journal of Forecasting, Elsevier, vol. 2(3), pages 261-272.
- Dalrymple, Douglas J., 1978. "Using Box-Jenkins techniques in sales forecasting," Journal of Business Research, Elsevier, vol. 6(2), pages 133-145, May.
- Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
- Au, Kin-Fan & Choi, Tsan-Ming & Yu, Yong, 2008. "Fashion retail forecasting by evolutionary neural networks," International Journal of Production Economics, Elsevier, vol. 114(2), pages 615-630, August.
- Sen, Alper, 2008. "The US fashion industry: A supply chain review," International Journal of Production Economics, Elsevier, vol. 114(2), pages 571-593, August.
- P. J. Harrison, 1967. "Exponential Smoothing and Short-Term Sales Forecasting," Management Science, INFORMS, vol. 13(11), pages 821-842, July.
- Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
- Boulden, James B., 1958. "Fitting the sales forecast to your firm," Business Horizons, Elsevier, vol. 1(1), pages 65-72.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
- Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
- Fallah Tehrani, Ali & Ahrens, Diane, 2016. "Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 131-138.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Bernardo Bertoldi & Chiara Giachino & Alberto Pastore, 2016. "Strategic pricing management in the omnichannel era," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2016(4), pages 131-152.
- Montero-Romero, Teresa & López-Martín, María del Carmen & Becerra-Alonso, David & Martínez-Estudillo, Francisco José, 2012. "Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions || Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 13(1), pages 3-23, June.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Thais de Castro Moraes & Xue‐Ming Yuan & Ek Peng Chew, 2024. "Hybrid convolutional long short‐term memory models for sales forecasting in retail," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1278-1293, August.
- Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
- Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
- NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
- Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
- Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
- Lean Yu & Zebin Yang & Ling Tang, 2016. "Prediction-Based Multi-Objective Optimization for Oil Purchasing and Distribution with the NSGA-II Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 423-451, March.
- Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
- Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
- Jiayun Wang & Shanshan Wu & Qingwei Jin & Yijun Wang & Can Chen, 2024. "Identifying Popular Products at an Early Stage of Sales Season for Apparel Industry," Interfaces, INFORMS, vol. 54(3), pages 282-296, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
- Claudio Felisoni de Angelo & Ronaldo Zwicker & Nuno Manoel Martins Dias Fouto & Marcos Roberto Luppe, 2011. "Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast," Brazilian Business Review, Fucape Business School, vol. 8(2), pages 01-21, April.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
More about this item
Keywords
Fashion sales forecasting Harmony search Neural network Extreme learning machine;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:614-624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.