IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i3p410-423.html
   My bibliography  Save this article

Dynamic mortality factor model with conditional heteroskedasticity

Author

Listed:
  • Gao, Quansheng
  • Hu, Chengjun

Abstract

In most methods for modeling mortality rates, the idiosyncratic shocks are assumed to be homoskedastic. This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series. We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee-Carter model for some mortality data. Then we introduce the Generalized Dynamic Factor method and the multivariate BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality. After specifying the number of static factors and dynamic factors by several variants of information criterion, we compare our model with other two models, namely, the Lee-Carter model and the state space model. Based on several error-based measures of performance, our results indicate that if the number of static factors and dynamic factors is properly determined, the method proposed dominates other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.

Suggested Citation

  • Gao, Quansheng & Hu, Chengjun, 2009. "Dynamic mortality factor model with conditional heteroskedasticity," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 410-423, December.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00102-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    7. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    8. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    9. Taufiq Choudhry & Hao Wu, 2008. "Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying beta," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 670-689.
    10. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    11. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    12. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    13. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    14. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    15. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    16. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    17. Bauer Daniel & Börger Matthias & Ruß Jochen & Zwiesler Hans-Joachim, 2008. "The Volatility of Mortality," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-29, September.
    18. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    19. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    2. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    3. Alexandros E. Milionis & Nikolaos G. Galanopoulos & Peter Hatzopoulos & Aliki Sagianou, 2022. "Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments," Working Papers 297, Bank of Greece.
    4. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    5. Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
    6. Li, Johnny Siu-Hang & Liu, Yanxin & Chan, Wai-Sum, 2023. "Hedging longevity risk under non-Gaussian state-space stochastic mortality models: A mean-variance-skewness-kurtosis approach," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 96-121.
    7. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    8. Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    2. Jin, Xisong & Nadal De Simone, Francisco de A., 2014. "Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach," Journal of Financial Stability, Elsevier, vol. 14(C), pages 81-101.
    3. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.
    4. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    5. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Aramonte, Sirio & Giudice Rodriguez, Marius del & Wu, Jason, 2013. "Dynamic factor Value-at-Risk for large heteroskedastic portfolios," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4299-4309.
    8. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    9. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
    10. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    11. Xisong Jin & Francisco Nadal De Simone, 2012. "An Early-warning and Dynamic Forecasting Framework of Default Probabilities for the Macroprudential Policy Indicators Arsenal," BCL working papers 75, Central Bank of Luxembourg.
    12. Matteo Barigozzi & Marco Capasso, 2007. "A Multivariate Perspective for Modeling and Forecasting Inflation's Conditional Mean and Variance," LEM Papers Series 2007/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    14. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    15. Kabundi, Alain & De Simone, Francisco Nadal, 2020. "Monetary policy and systemic risk-taking in the euro area banking sector," Economic Modelling, Elsevier, vol. 91(C), pages 736-758.
    16. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    17. Aboura, Sofiane & Chevallier, Julien, 2017. "A new weighting-scheme for equity indexes," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 159-175.
    18. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    19. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," UFAE and IAE Working Papers 852.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    20. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:410-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.