IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001247.html
   My bibliography  Save this article

Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data

Author

Listed:
  • Canaydin, Ada
  • Fu, Chun
  • Balint, Attila
  • Khalil, Mohamad
  • Miller, Clayton
  • Kazmi, Hussain

Abstract

Energy demand from the built environment is among the most important contributors to greenhouse gas emissions. One promising way to curtail these emissions is through innovative energy management systems (EMS’s). These systems often rely on access to real-world demand data, which remains elusive in practice. Even when available, energy demand data typically suffers from missing data as well as many irregularities and anomalies. This precludes the application of many off-the-shelf machine learning algorithms for time series analysis and modelling, necessary for downstream energy management. Transforming energy demand time series to low dimensional feature matrices has been shown to work well in determining similar buildings and predicting meta-data, both of which can be used to create better forecast algorithms used as input in EMS’s. These studies are, however, often marred by the limited size of datasets, as well as the non-interpretable nature of extracted features. This paper addresses these concerns and makes several important contributions: (1) it collates several open-source datasets to create a large meta-analysis dataset containing energy demand data for over 13,000 buildings; (2) it investigates the use of different interpretable feature extraction methods on this collated dataset; and (3) it shows that this feature matrix can be used more generally to determine similar buildings and predict building properties such as missing meta-data. The large feature matrix resulting from the work is open-sourced as part of a web-based dashboard to enable the community to reproduce and further develop our results.

Suggested Citation

  • Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001247
    DOI: 10.1016/j.apenergy.2024.122741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    4. Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020. "FFORMA: Feature-based forecast model averaging," International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
    5. Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    7. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    8. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    9. H. Kazmi & M. Keijsers & Fahad Mehmood & C. Miller, 2022. "Energy Balances, Thermal Performance, and Heat Stress: Disentangling Occupant Behaviour and Weather Influences in a Dutch Net-Zero Energy Neighborhood," Post-Print hal-04317814, HAL.
    10. Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
    11. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    12. Stoll, Heather & King, Gary & Zeng, Langche, 2005. "WhatIF: R Software for Evaluating Counterfactuals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i04).
    13. H. Kazmi & Í. Munné-Collado & Fahad Mehmood & T.A. Syed & J. Driesen, 2021. "Towards Data-Driven Energy Communities: A Review of Open-Source Datasets, Models and Tools," Post-Print hal-04317812, HAL.
    14. Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
    3. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    4. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    5. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    6. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    7. Joseph Macri & Dipendra Sinha, 2000. "Output variability and economic growth: The case of Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 24(3), pages 275-282, September.
    8. Keblowski, Piotr & Welfe, Aleksander, 2010. "Estimation of the equilibrium exchange rate: The CHEER approach," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1385-1397, November.
    9. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    10. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    11. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    12. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    13. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    14. Hany Fahmy, 2014. "Modelling nonlinearities in commodity prices using smooth transition regression models with exogenous transition variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 577-600, November.
    15. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
    16. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    17. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    18. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    19. Carlos Alberto Piscarreta Pinto Ferreira, 2022. "Revisiting The Determinants Of Sovereign Bond Yield Volatility," Working Papers REM 2022/0241, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    20. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.