Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.122741
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kazmi, Hussain & Munné-Collado, Íngrid & Mehmood, Fahad & Syed, Tahir Abbas & Driesen, Johan, 2021. "Towards data-driven energy communities: A review of open-source datasets, models and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- H. Kazmi & M. Keijsers & Fahad Mehmood & C. Miller, 2022. "Energy Balances, Thermal Performance, and Heat Stress: Disentangling Occupant Behaviour and Weather Influences in a Dutch Net-Zero Energy Neighborhood," Post-Print hal-04317814, HAL.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
- Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020.
"FFORMA: Feature-based forecast model averaging,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
- Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
- Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
- Stoll, Heather & King, Gary & Zeng, Langche, 2005. "WhatIF: R Software for Evaluating Counterfactuals," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i04).
- Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
- Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
- Yu, Min Gyung & Pavlak, Gregory S., 2022. "Extracting interpretable building control rules from multi-objective model predictive control data sets," Energy, Elsevier, vol. 240(C).
- H. Kazmi & Í. Munné-Collado & Fahad Mehmood & T.A. Syed & J. Driesen, 2021. "Towards Data-Driven Energy Communities: A Review of Open-Source Datasets, Models and Tools," Post-Print hal-04317812, HAL.
- Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
- Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
- Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
- Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005.
"Mean and variance causality between the Cyprus Stock Exchange and major equity markets,"
Working Papers
0501, University of Crete, Department of Economics.
- Georgios Kouretas & Eleni Constantinou & Robert Georgiades & Avo Kazandjian, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Money Macro and Finance (MMF) Research Group Conference 2005 24, Money Macro and Finance Research Group.
- Joseph Macri & Dipendra Sinha, 2000. "Output variability and economic growth: The case of Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 24(3), pages 275-282, September.
- Keblowski, Piotr & Welfe, Aleksander, 2010. "Estimation of the equilibrium exchange rate: The CHEER approach," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1385-1397, November.
- Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020.
"Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model,"
Energy Economics, Elsevier, vol. 88(C).
- Aviral Kumar Tiwari & Goodness C. Aye & Rangan Gupta & Konstantinos Gkillas, 2019. "Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model," Working Papers 201918, University of Pretoria, Department of Economics.
- Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014.
"Dynamic spillovers among major energy and cereal commodity prices,"
Energy Economics, Elsevier, vol. 43(C), pages 225-243.
- Walid Mensi & Shawkat Hammoudeh & Duc Khuong Nguyen & Seong-Min Yoon, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Working Papers 2014-160, Department of Research, Ipag Business School.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Hany Fahmy, 2014. "Modelling nonlinearities in commodity prices using smooth transition regression models with exogenous transition variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 577-600, November.
- Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
- Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
- Carlos Alberto Piscarreta Pinto Ferreira, 2022. "Revisiting The Determinants Of Sovereign Bond Yield Volatility," Working Papers REM 2022/0241, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
- Hugo Ferrer-Pérez & Filippo Arfini & José M. Gil, 2019. "Modelling Price Transmission within the Supply Chain under a European Protected Designation of Origin Framework: The Case of Parmigiano Reggiano in Italy," Social Sciences, MDPI, vol. 8(3), pages 1-13, March.
- B.P.M. McCabe & G.M. Martin & R.K. Freeland, 2004.
"Testing for Dependence in Non-Gaussian Time Series Data,"
Monash Econometrics and Business Statistics Working Papers
13/04, Monash University, Department of Econometrics and Business Statistics.
- Keith Freeland & Brendan McCabe & Gael Martin, 2004. "Testing for Dependence in Non-Gaussian Time Series Data," Econometric Society 2004 Australasian Meetings 313, Econometric Society.
- Shi Chen & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "A first econometric analysis of the CRIX family," Papers 2009.12129, arXiv.org.
- Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
More about this item
Keywords
Building energy demand; Meta-study; Forecasting; Energy management; Feature matrix; Clustering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.