IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i2p252-265.html
   My bibliography  Save this article

Forecasting correlated time series with exponential smoothing models

Author

Listed:
  • Corberán-Vallet, Ana
  • Bermúdez, José D.
  • Vercher, Enriqueta

Abstract

This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples.

Suggested Citation

  • Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:252-265
    DOI: 10.1016/j.ijforecast.2010.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010001172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2010.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
    2. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
    3. Koehler, Anne B. & Snyder, Ralph D. & Ord, J. Keith, 2001. "Forecasting models and prediction intervals for the multiplicative Holt-Winters method," International Journal of Forecasting, Elsevier, vol. 17(2), pages 269-286.
    4. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    5. J. Bermúdez & J. Segura & E. Vercher, 2008. "SIOPRED: a prediction and optimisation integrated system for demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 258-271, December.
    6. Griffiths, W.E., 2001. "Bayesian Inference in the Seemingly Unrelated Regressions Models," Department of Economics - Working Papers Series 793, The University of Melbourne.
    7. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    8. Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
    9. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 1, pages 3-80, Elsevier.
    10. repec:dau:papers:123456789/1908 is not listed on IDEAS
    11. Fernandez, F Javier & Harvey, Andrew C, 1990. "Seemingly Unrelated Time Series Equations and a Test for Homogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 71-81, January.
    12. Forbes, C.S. & Snyder, R.D. & Shami, R.S., 2000. "Bayesian Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 7/00, Monash University, Department of Econometrics and Business Statistics.
    13. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    14. Phillip G. Enns & Joseph A. Machak & W. Allen Spivey & William J. Wrobleski, 1982. "Forecasting Applications of an Adaptive Multiple Exponential Smoothing Model," Management Science, INFORMS, vol. 28(9), pages 1035-1044, September.
    15. Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007. "The vector innovation structural time series framework: a simple approach to multivariate forecasting," Monash Econometrics and Business Statistics Working Papers 3/07, Monash University, Department of Econometrics and Business Statistics.
    16. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    17. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    18. Pfeffermann, D. & Allon, J., 1989. "Multivariate exponential smoothing: Method and practice," International Journal of Forecasting, Elsevier, vol. 5(1), pages 83-98.
    19. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    20. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    2. repec:nbp:nbpbik:v:47:y:2016:i:6:p:365-394 is not listed on IDEAS
    3. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    4. Shobande Olatunji Abdul & Shodipe Oladimeji Tomiwa, 2020. "Re-Evaluation of World Population Figures: Politics and Forecasting Mechanics," Economics and Business, Sciendo, vol. 34(1), pages 104-125, February.
    5. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    6. Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    7. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    8. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    9. Gur Ali, Ozden & Pinar, Efe, 2016. "Multi-period-ahead forecasting with residual extrapolation and information sharing — Utilizing a multitude of retail series," International Journal of Forecasting, Elsevier, vol. 32(2), pages 502-517.
    10. Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
    11. Carlos Medel, 2021. "Forecasting Brazilian Inflation with the Hybrid New Keynesian Phillips Curve: Assessing the Predictive Role of Trading Partners," Working Papers Central Bank of Chile 900, Central Bank of Chile.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    2. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    3. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    4. Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
    7. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    8. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    9. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    10. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
    11. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    12. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    13. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    14. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    15. Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
    16. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    17. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    18. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    19. Ferbar Tratar, Liljana, 2015. "Forecasting method for noisy demand," International Journal of Production Economics, Elsevier, vol. 161(C), pages 64-73.
    20. Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:252-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.