IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i2p536-548.html
   My bibliography  Save this article

A general property for time aggregation

Author

Listed:
  • Alexander, Carol
  • Rauch, Johannes

Abstract

We classify all functions of multivariate stochastic processes having time-series estimates that are independent of data frequency. Such an estimator applied to high-frequency data may be used to infer properties of estimates relating to low-frequency data. Our property encompasses two previously-proposed time-aggregation properties (with limited solutions) as different special cases. Our general time-aggregating functions satisfy a pair of coupled second-order partial differential equations. We derive analytic solutions for arbitrary-dimensional martingales and log-martingales. The time-aggregation property of a time-series model is similar – indeed time-aggregating functions always correspond to point estimators based on expected values – but we do not propose a specific new forecasting model. However, we do derive time-aggregating unbiased and efficient estimators for nth-order moments of log returns, applying these results to problems facing portfolio managers who re-optimise portfolios or hedge their risks at lower frequencies than the frequency at which their risk premia are monitored.

Suggested Citation

  • Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:536-548
    DOI: 10.1016/j.ejor.2019.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    2. Stamatis Leontsinis & Carol Alexander, 2017. "Arithmetic variance swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 551-569, April.
    3. Carole Bernard & Zhenyu Cui, 2014. "Prices and Asymptotics for Discrete Variance Swaps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(2), pages 140-173, April.
    4. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    5. Mark Broadie & Ashish Jain, 2008. "The Effect Of Jumps And Discrete Sampling On Volatility And Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(08), pages 761-797.
    6. Bondarenko, Oleg, 2014. "Variance trading and market price of variance risk," Journal of Econometrics, Elsevier, vol. 180(1), pages 81-97.
    7. Fotios Petropoulos & Nikolaos Kourentzes, 2015. "Forecast combinations for intermittent demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(6), pages 914-924, June.
    8. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    9. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    10. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    11. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    12. Aghababa, Hajar & Barnett, William A., 2016. "Dynamic structure of the spot price of crude oil: does time aggregation matter?," Energy Economics, Elsevier, vol. 59(C), pages 227-237.
    13. Paul Schneider & Fabio Trojani, 2019. "Divergence and the Price of Uncertainty," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 341-396.
    14. Yacine Ait-Sahalia & Mustafa Karaman & Loriano Mancini, 2018. "The Term Structure of Variance Swaps and Risk Premia," Swiss Finance Institute Research Paper Series 18-37, Swiss Finance Institute.
    15. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    16. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    17. Robert Jarrow & Younes Kchia & Martin Larsson & Philip Protter, 2013. "Discretely sampled variance and volatility swaps versus their continuous approximations," Finance and Stochastics, Springer, vol. 17(2), pages 305-324, April.
    18. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    19. Ait-Sahalia, Yacine, 2004. "Disentangling diffusion from jumps," Journal of Financial Economics, Elsevier, vol. 74(3), pages 487-528, December.
    20. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    21. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    22. Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.
    23. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    24. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    25. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    26. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    27. P. Carr & D. Madan, 2001. "Optimal positioning in derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 19-37.
    28. Christian M. Hafner, 2009. "Causality and forecasting in temporally aggregated multivariate GARCH processes," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 127-146, March.
    29. Henghsiu Tsai & K. S. Chan, 2005. "Temporal Aggregation of Stationary And Nonstationary Discrete‐Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 613-624, July.
    30. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexander & Johannes Rauch, 2017. "The Aggregation Property and its Applications to Realised Higher Moments," Papers 1709.08188, arXiv.org.
    2. Carol Alexander & Johannes Rauch, 2016. "Model-Free Discretisation-Invariant Swap Contracts," Papers 1602.00235, arXiv.org, revised Apr 2016.
    3. Carol Alexander & Johannes Rauch, 2014. "Model-Free Discretisation-Invariant Swaps and S&P 500 Higher-Moment Risk Premia," Papers 1404.1351, arXiv.org, revised Feb 2016.
    4. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    5. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    6. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    7. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    8. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    9. Johannes Rauch & Carol Alexander, 2016. "Tail Risk Premia for Long-Term Equity Investors," Papers 1602.00865, arXiv.org.
    10. Aït-Sahalia, Yacine & Karaman, Mustafa & Mancini, Loriano, 2020. "The term structure of equity and variance risk premia," Journal of Econometrics, Elsevier, vol. 219(2), pages 204-230.
    11. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    14. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    15. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    16. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    17. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    18. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    19. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    20. Seungmook Choi & Hongtao Yang, 2019. "Model-Free Implied Volatility under Jump-Diffusion Models," Review of Economics & Finance, Better Advances Press, Canada, vol. 16, pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:536-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.