IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p344-d69537.html
   My bibliography  Save this article

High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series

Author

Listed:
  • Christopher Jung

    (Environmental Meteorology, Albert-Ludwigs-University of Freiburg, Werthmannstrasse 10, Freiburg D-79085, Germany)

Abstract

In this paper a methodology is presented that can be used to model the annual wind energy yield ( AEY mod ) on a high spatial resolution (50 m × 50 m) grid based on long-term (1979–2010) near-surface wind speed ( U S ) time series measured at 58 stations of the German Weather Service (DWD). The study area for which AEY mod is quantified is the German federal state of Baden-Wuerttemberg. Comparability of the wind speed time series was ensured by gap filling, homogenization and detrending. The U S values were extrapolated to the height 100 m ( U 100m,emp ) above ground level (AGL) by the Hellman power law. All U 100m,emp time series were then converted to empirical cumulative distribution functions (CDF emp ). 67 theoretical cumulative distribution functions (CDF) were fitted to all CDF emp and their goodness of fit (GoF) was evaluated. It turned out that the five-parameter Wakeby distribution (WK5) is universally applicable in the study area. Prior to the least squares boosting (LSBoost)-based modeling of WK5 parameters, 92 predictor variables were obtained from: (i) a digital terrain model (DTM), (ii) the European Centre for Medium-Range Weather Forecasts re-analysis (ERA)-Interim reanalysis wind speed data available at the 850 hPa pressure level ( U 850hPa ), and (iii) the Coordination of Information on the Environment (CORINE) Land Cover (CLC) data. On the basis of predictor importance ( PI) and the evaluation of model accuracy, the combination of predictor variables that provides the best discrimination between U 100m,emp and the modeled wind speed at 100 m AGL ( U 100m,mod ), was identified. Results from relative PI -evaluation demonstrate that the most important predictor variables are relative elevation (Φ) and topographic exposure (τ) in the main wind direction. Since all WK5 parameters are available, any manufacturer power curve can easily be applied to quantify AEY mod .

Suggested Citation

  • Christopher Jung, 2016. "High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series," Energies, MDPI, vol. 9(5), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:344-:d:69537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    2. Lew, Debra J., 2000. "Alternatives to coal and candles: wind power in China," Energy Policy, Elsevier, vol. 28(4), pages 271-286, April.
    3. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    4. Tar, Károly, 2008. "Some statistical characteristics of monthly average wind speed at various heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1712-1724, August.
    5. Samuel Van Ackere & Greet Van Eetvelde & David Schillebeeckx & Enrica Papa & Karel Van Wyngene & Lieven Vandevelde, 2015. "Wind Resource Mapping Using Landscape Roughness and Spatial Interpolation Methods," Energies, MDPI, vol. 8(8), pages 1-22, August.
    6. Gualtieri, Giovanni & Secci, Sauro, 2012. "Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison," Renewable Energy, Elsevier, vol. 43(C), pages 183-200.
    7. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    8. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    9. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis," Renewable Energy, Elsevier, vol. 33(6), pages 1237-1250.
    10. Celik, A.N., 2003. "Assessing the suitability of wind speed probabilty distribution functions based on wind power density," Renewable Energy, Elsevier, vol. 28(10), pages 1563-1574.
    11. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    12. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    13. Lydia, M. & Suresh Kumar, S. & Immanuel Selvakumar, A. & Edwin Prem Kumar, G., 2015. "Wind resource estimation using wind speed and power curve models," Renewable Energy, Elsevier, vol. 83(C), pages 425-434.
    14. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    15. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    16. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: A neural kriging application," Renewable Energy, Elsevier, vol. 33(6), pages 1251-1266.
    17. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    18. Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
    19. Touré, Siaka, 2005. "Investigations on the Eigen‐coordinates method for the 2‐parameter weibull distribution of wind speed," Renewable Energy, Elsevier, vol. 30(4), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Christopher & Schindler, Dirk, 2018. "On the inter-annual variability of wind energy generation – A case study from Germany," Applied Energy, Elsevier, vol. 230(C), pages 845-854.
    2. Houndekindo, Freddy & Ouarda, Taha B.M.J., 2024. "Prediction of hourly wind speed time series at unsampled locations using machine learning," Energy, Elsevier, vol. 299(C).
    3. Leonie Grau & Christopher Jung & Dirk Schindler, 2017. "On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany," Sustainability, MDPI, vol. 9(7), pages 1-11, July.
    4. Christopher Jung & Dirk Schindler & Alexander Buchholz & Jessica Laible, 2017. "Global Gust Climate Evaluation and Its Influence on Wind Turbines," Energies, MDPI, vol. 10(10), pages 1-18, September.
    5. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    2. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    3. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    4. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    5. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    6. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    7. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    8. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    9. Tar, Károly & Farkas, István & Rózsavölgyi, Kornél, 2011. "Climatic conditions for operation of wind turbines in Hungary," Renewable Energy, Elsevier, vol. 36(2), pages 510-518.
    10. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    11. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    12. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    13. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    14. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    15. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    16. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.
    17. Saleh, H. & Abou El-Azm Aly, A. & Abdel-Hady, S., 2012. "Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt," Energy, Elsevier, vol. 44(1), pages 710-719.
    18. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    19. Fadare, D.A., 2010. "The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria," Applied Energy, Elsevier, vol. 87(3), pages 934-942, March.
    20. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:344-:d:69537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.