IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v23y2017i7p1496-1514.html
   My bibliography  Save this article

Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model

Author

Listed:
  • Gaojun Zhang

    (Jinan University, China)

  • Jinfeng Wu

    (Shaanxi Normal University, China)

  • Bing Pan

    (Penn State University, USA)

  • Junyi Li

    (Shaanxi Normal University, China)

  • Minjie Ma

    (Xi’an Special Education School, China)

  • Muzi Zhang

    (Shaanxi Normal University, China)

  • Jian Wang

    (The Rainmaker Group, USA)

Abstract

Predicting daily occupancy is extremely important for the revenue management of individual hotels. However, daily occupancy can fluctuate widely and is difficult to forecast accurately based on existing forecasting methods. In this article, ensemble empirical mode decomposition (EEMD)—a novel method—is introduced, and an individual hotel is chosen to test the effectiveness of EEMD in combination with an autoregressive integrated moving average (ARIMA). Result shows that this novel method, EEMD-ARIMA, can improve forecasting accuracy compared to the popular ARIMA method, especially for short-term forecasting.

Suggested Citation

  • Gaojun Zhang & Jinfeng Wu & Bing Pan & Junyi Li & Minjie Ma & Muzi Zhang & Jian Wang, 2017. "Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model," Tourism Economics, , vol. 23(7), pages 1496-1514, November.
  • Handle: RePEc:sae:toueco:v:23:y:2017:i:7:p:1496-1514
    DOI: 10.1177/1354816617706852
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1354816617706852
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1354816617706852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Gang & Song, Haiyan & Witt, Stephen F., 2006. "Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 22(1), pages 57-71.
    2. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    3. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
    4. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    5. Fangdong Cao & Zhenfang Huang & Cheng Jin & Min Xu, 2016. "Influence of Chinese economic fluctuations on tourism efficiency in national scenic areas," Tourism Economics, , vol. 22(5), pages 884-907, October.
    6. Ferda Halicioglu, 2010. "An Econometric Analysis of the Aggregate Outbound Tourism Demand of Turkey," Tourism Economics, , vol. 16(1), pages 83-97, March.
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Weatherford, Larry R. & Kimes, Sheryl E., 2003. "A comparison of forecasting methods for hotel revenue management," International Journal of Forecasting, Elsevier, vol. 19(3), pages 401-415.
    9. Chan, Chi Kin & Witt, Stephen F. & Lee, Y.C.E. & Song, H., 2010. "Tourism forecast combination using the CUSUM technique," Tourism Management, Elsevier, vol. 31(6), pages 891-897.
    10. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    11. Song, Haiyan & Lin, Shanshan & Witt, Stephen F. & Zhang, Xinyan, 2011. "Impact of financial/economic crisis on demand for hotel rooms in Hong Kong," Tourism Management, Elsevier, vol. 32(1), pages 172-186.
    12. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    13. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    14. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Webb, 2022. "Forecasting at capacity: the bias of unconstrained forecasts in model evaluation," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 645-656, December.
    2. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    3. Vatsa, Puneet, 2020. "Comovement amongst the demand for New Zealand tourism," Annals of Tourism Research, Elsevier, vol. 83(C).
    4. Tianxiang Zheng & Shaopeng Liu & Zini Chen & Yuhan Qiao & Rob Law, 2020. "Forecasting Daily Room Rates on the Basis of an LSTM Model in Difficult Times of Hong Kong: Evidence from Online Distribution Channels on the Hotel Industry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    6. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    7. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    8. Muzi Zhang & Junyi Li & Bing Pan & Gaojun Zhang, 2018. "Weekly Hotel Occupancy Forecasting of a Tourism Destination," Sustainability, MDPI, vol. 10(12), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
    3. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    4. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    5. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    6. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
    9. Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
    10. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).
    11. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    12. Gang Xie & Xin Li & Yatong Qian & Shouyang Wang, 2021. "Forecasting tourism demand with KPCA-based web search indexes," Tourism Economics, , vol. 27(4), pages 721-743, June.
    13. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    14. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    15. Vatsa, Puneet, 2020. "Comovement amongst the demand for New Zealand tourism," Annals of Tourism Research, Elsevier, vol. 83(C).
    16. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    17. Serdar Ongan & Cem Işik & Dilek Özdemir, 2017. "The Effects of Real Exchange Rates and Income on International Tourism Demand for the USA from Some European Union Countries," Economies, MDPI, vol. 5(4), pages 1-11, December.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    20. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:23:y:2017:i:7:p:1496-1514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.