Testing big data in a big crisis: Nowcasting under Covid-19
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2022.10.005
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
References listed on IDEAS
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Consoli, Sergio & Pezzoli, Luca Tiozzo & Tosetti, Elisa, 2021.
"Emotions in macroeconomic news and their impact on the European bond market,"
Journal of International Money and Finance, Elsevier, vol. 118(C).
- Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2021. "Emotions in Macroeconomic News and their Impact on the European Bond Market," Papers 2106.15698, arXiv.org.
- James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dietrich, Alexander M. & Kuester, Keith & Müller, Gernot J. & Schoenle, Raphael, 2022.
"News and uncertainty about COVID-19: Survey evidence and short-run economic impact,"
Journal of Monetary Economics, Elsevier, vol. 129(S), pages 35-51.
- Alexander Dietrich & Keith Kuester & Gernot J. Müller & Raphael Schoenle, 2020. "News and Uncertainty about COVID-19: Survey Evidence and Short-Run Economic Impact," Working Papers 20-12R, Federal Reserve Bank of Cleveland, revised 22 Dec 2021.
- Alexander M. Dietrich & Keith Kuester & Gernot J. Müller & Raphael S. Schoenle, 2020. "News and uncertainty about COVID-19: Survey evidence and short-run economic impact," ECONtribute Policy Brief Series 004, University of Bonn and University of Cologne, Germany.
- Müller, Gernot & Dietrich, Alexander & Kuester, Keith & Schoenle, Raphael, 2021. "News and uncertainty about COVID-19: Survey evidence and short-run economic impact," CEPR Discussion Papers 16766, C.E.P.R. Discussion Papers.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023.
"Nowcasting in a pandemic using non-parametric mixed frequency VARs,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
- Florian Huber & Gary Koop & Luca Onorante & Michael Pfarrhofer & Josef Schreiner, 2020. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Papers 2008.12706, arXiv.org, revised Dec 2020.
- Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," JRC Working Papers in Economics and Finance 2021-01, Joint Research Centre, European Commission.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
- Caroline Jardet & Baptiste Meunier, 2022.
"Nowcasting world GDP growth with high‐frequency data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
- Jardet Caroline & Meunier Baptiste, 2020. "Nowcasting World GDP Growth with High-Frequency Data," Working papers 788, Banque de France.
- Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Post-Print hal-03647097, HAL.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Joshua Blonz & Jacob Williams, 2020. "Electricity Demand as a High-Frequency Economic Indicator: A Case Study of the COVID-19 Pandemic and Hurricane Harvey," FEDS Notes 2020-10-21-2, Board of Governors of the Federal Reserve System (U.S.).
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018.
"Macroeconomic Nowcasting and Forecasting with Big Data,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
- Giannone, Domenico & Tambalotti, Andrea & Sbordone, Argia & Bok, Brandyn & Caratelli, Daniele, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," CEPR Discussion Papers 12589, C.E.P.R. Discussion Papers.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Stefano Maria Iacus & Fabrizio Natale & Carlos Satamaria & Spyridon Spyratos & Michele Vespe, 2020. "Estimating and Projecting Air Passenger Traffic during the COVID-19 Coronavirus Outbreak and its Socio-Economic Impact," Papers 2004.08460, arXiv.org, revised Apr 2020.
- Hong, Han & Preston, Bruce, 2012.
"Bayesian averaging, prediction and nonnested model selection,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 358-369.
- Han Hong & Bruce Preston, 2008. "Bayesian Averaging, Prediction and Nonnested Model Selection," NBER Working Papers 14284, National Bureau of Economic Research, Inc.
- Amit Goyal & Ivo Welch, 2003.
"Predicting the Equity Premium with Dividend Ratios,"
Management Science, INFORMS, vol. 49(5), pages 639-654, May.
- Amit Goyal & Ivo Welch, 1999. "Predicting the Equity Premium with Dividend Ratios," Yale School of Management Working Papers amz2437, Yale School of Management, revised 01 Nov 2002.
- Amit Goyal & Ivo Welch, 2002. "Predicting the Equity Premium With Dividend Ratios," NBER Working Papers 8788, National Bureau of Economic Research, Inc.
- Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
- Jonathan H. Wright, 2013.
"Evaluating Real‐Time Var Forecasts With An Informative Democratic Prior,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 762-776, August.
- Jonathan H. Wright, 2010. "Evaluating real-time VAR forecasts with an informative democratic prior," Working Papers 10-19, Federal Reserve Bank of Philadelphia.
- Leif Anders Thorsrud, 2020.
"Words are the New Numbers: A Newsy Coincident Index of the Business Cycle,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Papers No 4/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Words are the new numbers: A newsy coincident index of business cycles," Working Paper 2016/21, Norges Bank.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
- Ferrara, Laurent & Sheng, Xuguang Simon, 2022. "Guest editorial: Economic forecasting in times of COVID-19," International Journal of Forecasting, Elsevier, vol. 38(2), pages 527-528.
- Lean Yu & Zebin Yang & Ling Tang, 2018. "Quantile estimators with orthogonal pinball loss function," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 401-417, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2013.
"Nowcasting Business Cycles Using Toll Data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 299-306, July.
- Askitas, Nikos & Zimmermann, Klaus F., 2011. "Nowcasting Business Cycles Using Toll Data," IZA Discussion Papers 5522, Institute of Labor Economics (IZA).
- Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023.
"Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
- Andres Algaba & Samuel Borms & Kris Boudt & Brecht Verbeken, 2021. "Daily news sentiment and monthly surveys: A mixed–frequency dynamic factor model for nowcasting consumer confidence," Working Paper Research 396, National Bank of Belgium.
- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- Kapetanios, George & Labhard, Vincent & Price, Simon, 2008.
"Forecast combination and the Bank of England's suite of statistical forecasting models,"
Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
- George Kapetanios & Vincent Labhard & Simon Price, 2007. "Forecast combination and the Bank of England’s suite of statistical forecasting models," Bank of England working papers 323, Bank of England.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021.
"Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
- Alessandro Giovannelli & Tommaso Proietti & Ambra Citton & Ottavio Ricchi & Cristian Tegami & Cristina Tinti, 2020. "Nowcasting GDP and its Components in a Data-rich Environment: the Merits of the Indirect Approach," CEIS Research Paper 489, Tor Vergata University, CEIS, revised 30 May 2020.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Eraslan, Sercan & Götz, Thomas, 2021. "An unconventional weekly economic activity index for Germany," Economics Letters, Elsevier, vol. 204(C).
- Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004.
"Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach,"
American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach," OECD Economics Department Working Papers 266, OECD Publishing.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Daniel Lewis & Karel Mertens & James H. Stock, 2020. "U.S. Economic Activity During the Early Weeks of the SARS-Cov-2 Outbreak," NBER Working Papers 26954, National Bureau of Economic Research, Inc.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023.
"Nowcasting industrial production using linear and non-linear models of electricity demand,"
Energy Economics, Elsevier, vol. 126(C).
- Giulio Galdi & Roberto Casarin & Davide Ferrari & Carlo Fezzi & Francesco Ravazzolo, 2022. "Nowcasting industrial production using linear and non-linear models of electricity demand," DEM Working Papers 2022/2, Department of Economics and Management.
- Holtemöller, Oliver & Kozyrev, Boris, 2024. "Forecasting economic activity using a neural network in uncertain times: Monte Carlo evidence and application to the German GDP," IWH Discussion Papers 6/2024, Halle Institute for Economic Research (IWH).
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
- Cseres-Gergely, Zsombor & Kecht, Valentin & Le Blanc, Julia & Onorante, Luca, 2024. "The economic impact of general vs. targeted lockdowns: New insights from Italian municipalities," Economic Modelling, Elsevier, vol. 134(C).
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas, 2023. "Nowcasting Economic Activity Using Electricity Market Data: The Case of Lithuania," Economies, MDPI, vol. 11(5), pages 1-21, May.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
- Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Luke Hartigan & Tom Rosewall, 2024.
"Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator,"
Working Papers
2024-15, University of Sydney, School of Economics.
- Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," RBA Research Discussion Papers rdp2024-04, Reserve Bank of Australia.
- Robert Lehmann & Sascha Möhrle, 2024.
"Forecasting regional industrial production with novel high‐frequency electricity consumption data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
- Robert Lehmann & Sascha Möhrle, 2022. "Forecasting Regional Industrial Production with High-Frequency Electricity Consumption Data," CESifo Working Paper Series 9917, CESifo.
- Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
- Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
- Leif Anders Thorsrud, 2016.
"Nowcasting using news topics Big Data versus big bank,"
Working Papers
No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
More about this item
Keywords
Bayesian model averaging; Big data; Covid-19 pandemic; Gross domestic product; Nowcasting;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
- E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:4:p:1548-1563. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.