IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v23y2017i3p594-613.html
   My bibliography  Save this article

Non-linear models for tourism demand forecasting

Author

Listed:
  • Andrea Saayman

    (North-West University, South Africa)

  • Ilsé Botha

    (University of Johannesburg, South Africa)

Abstract

Quantitative methods for forecasting tourist arrivals can be subdivided into causal methods and non-causal methods. Non-causal time series methods remain popular tourism forecasting tools due to the accuracy of their forecasting ability and general ease of use. Since tourist arrivals exhibit seasonality, Seasonal Autoregressive Integrated Moving Average (SARIMA) models are often found to be the most accurate. However, these models assume that the time series is linear. This article compares the baseline seasonal Naïve and SARIMA forecasts of a seasonal tourist destination faced with a structural break in the data with alternative non-linear methods, with the aim of determining the accuracy of the various methods. These methods include the unobserved components model, smooth transition autoregressive model and singular spectrum analysis. The results show that the non-linear forecasts outperform the other methods. The linear methods show some superiority in short-term forecasts when there are no structural changes in the time series.

Suggested Citation

  • Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
  • Handle: RePEc:sae:toueco:v:23:y:2017:i:3:p:594-613
    DOI: 10.5367/te.2015.0532
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5367/te.2015.0532
    Download Restriction: no

    File URL: https://libkey.io/10.5367/te.2015.0532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    2. Chu, Fong-Lin, 2011. "A piecewise linear approach to modeling and forecasting demand for Macau tourism," Tourism Management, Elsevier, vol. 32(6), pages 1414-1420.
    3. Christina Beneki & Bruno Eeckels & Costas Leon, 2012. "Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(5), pages 391-400, August.
    4. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
    5. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    6. Lindsay W. Turner & Stephen F. Witt, 2001. "Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models," Tourism Economics, , vol. 7(2), pages 135-147, June.
    7. Jae H. Kim & Imad Moosa, 2001. "Seasonal Behaviour of Monthly International Tourist Flows: Specification and Implications for Forecasting Models," Tourism Economics, , vol. 7(4), pages 381-396, December.
    8. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    9. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    10. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    11. Chan, Chi Kin & Witt, Stephen F. & Lee, Y.C.E. & Song, H., 2010. "Tourism forecast combination using the CUSUM technique," Tourism Management, Elsevier, vol. 31(6), pages 891-897.
    12. Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
    13. Song, Haiyan & Hyndman, Rob J., 2011. "Tourism forecasting: An introduction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 817-821, July.
    14. Shujie Shen & Gang Li & Haiyan Song, 2009. "Effect of Seasonality Treatment on the Forecasting Performance of Tourism Demand Models," Tourism Economics, , vol. 15(4), pages 693-708, December.
    15. Brierley, Phil, 2011. "Winning methods for forecasting seasonal tourism time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 853-854, July.
    16. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    2. Ann-Ni Soh & Chin-Hong Puah & M. Affendy Arip, 2019. "Forecasting Tourism Demand with Composite Indicator Approach for Fiji," Business and Economic Research, Macrothink Institute, vol. 9(4), pages 12-22, December.
    3. Anna Šenková & Martina Košíková & Daniela Matušíková & Kristína Šambronská & Ivana Kravčáková Vozárová & Rastislav Kotulič, 2021. "Time Series Modeling Analysis of the Development and Impact of the COVID-19 Pandemic on Spa Tourism in Slovakia," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    4. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    5. Chhorn, Theara & Chaiboonsri, Chukiat, 2017. "Modelling and Forecasting Tourist Arrivals to Cambodia: An Application of ARIMA-GARCH Approach," MPRA Paper 83942, University Library of Munich, Germany, revised 27 Dec 2017.
    6. Jean-François Verne, 2021. "Smooth Threshold Autoregressive models and Markov process: An application to the Lebanese GDP growth rate," International Econometric Review (IER), Econometric Research Association, vol. 13(3), pages 71-88, September.
    7. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
    8. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    9. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
    10. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    11. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
    3. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    4. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    5. Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
    6. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    7. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    8. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    9. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    10. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    11. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    12. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    13. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    14. Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
    15. Keerti Manisha & Inderpal Singh, 2024. "Forecasting of Indian and foreign tourist arrivals to Himachal Pradesh using Decomposition, Box–Jenkins, and Holt–Winters exponential smoothing methods," Asia-Pacific Journal of Regional Science, Springer, vol. 8(3), pages 879-909, September.
    16. Gaojun Zhang & Jinfeng Wu & Bing Pan & Junyi Li & Minjie Ma & Muzi Zhang & Jian Wang, 2017. "Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model," Tourism Economics, , vol. 23(7), pages 1496-1514, November.
    17. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    18. repec:ptu:bdpart:r201613 is not listed on IDEAS
    19. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    20. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    21. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:23:y:2017:i:3:p:594-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.