IDEAS home Printed from https://ideas.repec.org/a/sae/ausman/v40y2015i4p630-651.html
   My bibliography  Save this article

Evidence of speculation in world oil prices

Author

Listed:
  • Dale Roberts

    (Research School of Finance, Actuarial Studies, and Applied Statistics, Australian National University, ACT, Australia)

  • Laura Ryan

    (AustralianSuper, Australia)

Abstract

It has recently been suggested that financial speculation is now playing an important role in daily price movements of global oil prices. This raises the question: what are important drivers of price changes given this new speculative regime? We identify new factors of the oil market related to speculation by fitting subset vector autoregression models with exogenous variables (SubVARX) and rank them by importance. Further, to account for model uncertainty and to obtain robust parameter estimation in this study, we apply a bootstrap model selection procedure. We find that certain speculative factors explain a large portion of the variation in oil price for the given data set.

Suggested Citation

  • Dale Roberts & Laura Ryan, 2015. "Evidence of speculation in world oil prices," Australian Journal of Management, Australian School of Business, vol. 40(4), pages 630-651, November.
  • Handle: RePEc:sae:ausman:v:40:y:2015:i:4:p:630-651
    DOI: 10.1177/0312896214534150
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0312896214534150
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0312896214534150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cunado, J. & Perez de Gracia, F., 2005. "Oil prices, economic activity and inflation: evidence for some Asian countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(1), pages 65-83, February.
    2. Matteo Manera & Chiara Longo & Anil Markandya & Elisa Scarpa, 2007. "Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting," Working Papers 2007.4, Fondazione Eni Enrico Mattei.
    3. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    4. Mr. Shaun K. Roache, 2008. "Commodities and the Market Price of Risk," IMF Working Papers 2008/221, International Monetary Fund.
    5. Uri, Noel D. & Boyd, Roy, 1997. "An evaluation of the economic effects of higher energy prices in Mexico," Energy Policy, Elsevier, vol. 25(2), pages 205-215, February.
    6. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    7. Hans‐Martin Krolzig, 2003. "General‐to‐Specific Model Selection Procedures for Structural Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 769-801, December.
    8. Gisser, Micha & Goodwin, Thomas H, 1986. "Crude Oil and the Macroeconomy: Tests of Some Popular Notions: A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 18(1), pages 95-103, February.
    9. Jeffrey A Frankel & Andrew K Rose, 2010. "Determinants of Agricultural and Mineral Commodity Prices," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    10. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    11. Ye Pang & Wei Xu & Lean Yu & Jian Ma & Kin Keung Lai & Shouyang Wang & Shanying Xu, 2011. "Forecasting The Crude Oil Spot Price By Wavelet Neural Networks Using Oecd Petroleum Inventory Levels," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 281-297.
    12. Hans-Martin Krolzig, 2003. "General-to-Specific Model Selection Procedures for Structural Vector Autoregressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 769-801, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Frankel, Jeffrey A., 2014. "Effects of speculation and interest rates in a “carry trade” model of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 88-112.
    3. Alom, Fardous, 2011. "Economic Effects of Oil and Food Price Shocks in Asia and Pacific Countries: An Application of SVAR Model," 2011 Conference, August 25-26, 2011, Nelson, New Zealand 115346, New Zealand Agricultural and Resource Economics Society.
    4. Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
    5. Shaeri, Komeil & Adaoglu, Cahit & Katircioglu, Salih T., 2016. "Oil price risk exposure: A comparison of financial and non-financial subsectors," Energy, Elsevier, vol. 109(C), pages 712-723.
    6. Anand, B. & Paul, Sunil & Ramachandran, M., 2014. "Volatility Spillover between Oil and Stock Market Returns," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 49(1), pages 37-56.
    7. Shigeki Ono, 2011. "Oil Price Shocks and Stock Markets in BRICs," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 8(1), pages 29-45, June.
    8. Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "Oil prices and global factor macroeconomic variables," Energy Economics, Elsevier, vol. 59(C), pages 198-212.
    9. Boubaker, Heni & Raza, Syed Ali, 2017. "A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets," Energy Economics, Elsevier, vol. 64(C), pages 105-117.
    10. Matteo Manera & Alessandro Cologni, 2006. "The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries," Working Papers 2006.29, Fondazione Eni Enrico Mattei.
    11. Shahrestani, Parnia & Rafei, Meysam, 2020. "The impact of oil price shocks on Tehran Stock Exchange returns: Application of the Markov switching vector autoregressive models," Resources Policy, Elsevier, vol. 65(C).
    12. Ratti, Ronald A. & Vespignani, Joaquin L., 2014. "Oil prices and the economy: A global perspective," MPRA Paper 59407, University Library of Munich, Germany.
    13. Heidari, Hassan & Ebrahimi Torki, Mahyar & Babaei Balderlou, Saharnaz, 2015. "How Do Different Oil Price Shocks Affect the Relationship Between Oil and Stock Markets?," MPRA Paper 80273, University Library of Munich, Germany, revised 24 Dec 2016.
    14. Tarek Ghazouani, 2020. "Energy Price Shocks and Financial Market Integration: Evidence from New Keynesian Model," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 26(1), pages 13-32, February.
    15. Rafiq, Shudhasattwa & Sgro, Pasquale & Apergis, Nicholas, 2016. "Asymmetric oil shocks and external balances of major oil exporting and importing countries," Energy Economics, Elsevier, vol. 56(C), pages 42-50.
    16. Tsai, Chun-Li, 2013. "The high-frequency asymmetric response of stock returns to monetary policy for high oil price events," Energy Economics, Elsevier, vol. 36(C), pages 166-176.
    17. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    18. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    19. Lacheheb, Miloud & Sirag, Abdalla, 2019. "Oil price and inflation in Algeria: A nonlinear ARDL approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 217-222.
    20. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:ausman:v:40:y:2015:i:4:p:630-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.agsm.edu.au .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.