Unraveling the Lagged Effect of Hydro-meteorological Conditions On the Trophic State of a Reservoir By Applying Dynamic Regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03254-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Icen Yoosefdoost & Abbas Khashei-Siuki & Hossein Tabari & Omolbani Mohammadrezapour, 2022. "Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1191-1215, March.
- Manish Kumar & Ahmed Elbeltagi & Chaitanya B. Pande & Ali Najah Ahmed & Ming Fai Chow & Quoc Bao Pham & Anuradha Kumari & Deepak Kumar, 2022. "Applications of Data-driven Models for Daily Discharge Estimation Based on Different Input Combinations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2201-2221, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
- Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
- Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018.
"Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks,"
Risks, MDPI, vol. 6(1), pages 1-20, March.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Post-Print hal-02055155, HAL.
- Svitlana Galeshchuk, 2017. "Technological bias at the exchange rate market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 80-86, April.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
More about this item
Keywords
Water quality; Trophic state index; Hydro-meteorological conditions; San Roque reservoir; Time series; Dynamic regression model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03254-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.