IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/7398.html
   My bibliography  Save this paper

Nowcasting prices using Google trends : an application to Central America

Author

Listed:
  • Seabold,Skipper
  • Coppola,Andrea

Abstract

The objective of this study is to assess the possibility of using Internet search keyword data for forecasting price series in Central America, focusing on Costa Rica, El Salvador, and Honduras. The Internet search data comes from Google Trends. The paper introduces these data and discusses some of the challenges inherent in working with it in the context of developing countries. A new index is introduced for consumer search behavior for these countries using Google Trends data covering a two-week period during a single month. For each country, the study estimates one-step-ahead forecasts for several dozen price series for food and consumer goods categories. The study finds that the addition of the Internet search index improves forecasting over benchmark models in about 20 percent of the series. The paper discusses the reasons for the varied success and potential avenues for future research.

Suggested Citation

  • Seabold,Skipper & Coppola,Andrea, 2015. "Nowcasting prices using Google trends : an application to Central America," Policy Research Working Paper Series 7398, The World Bank.
  • Handle: RePEc:wbk:wbrwps:7398
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2015/08/19/090224b083082ff3/2_0/Rendered/PDF/Nowcasting0pri0n0to0Central0America.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    3. Tanya Suhoy, 2009. "Query Indices and a 2008 Downturn: Israeli Data," Bank of Israel Working Papers 2009.06, Bank of Israel.
    4. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    5. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    6. repec:zbw:rwirep:0382 is not listed on IDEAS
    7. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    8. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    9. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    10. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    11. Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    12. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi, Tsung-Li & Liu, Hung-Tsen & Chang, Chia-Chien, 2023. "Hedging performance using google Trends–Evidence from the indian forex options market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 107-123.
    2. Jain, Anshul & Biswal, Pratap Chandra, 2019. "Does internet search interest for gold move the gold spot, stock and exchange rate markets? A study from India," Resources Policy, Elsevier, vol. 61(C), pages 501-507.
    3. Petrova, Diana & Trunin, Pavel, 2020. "Revealing the mood of economic agents based on search queries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 71-87.
    4. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    5. Svatopluk Kapounek & Zuzana Kučerová & Evžen Kočenda, 2022. "Selective Attention in Exchange Rate Forecasting," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 210-229, May.
    6. Bulut Levent & Dogan Can, 2018. "Google Trends and Structural Exchange Rate Models for Turkish Lira–US Dollar Exchange Rate," Review of Middle East Economics and Finance, De Gruyter, vol. 14(2), pages 1-12, August.
    7. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
    8. Jouchi Nakajima & Hiroaki Yamagata & Tatsushi Okuda & Shinnosuke Katsuki & Takeshi Shinohara, 2021. "Extracting Firms' Short-Term Inflation Expectations from the Economy Watchers Survey Using Text Analysis," Bank of Japan Working Paper Series 21-E-12, Bank of Japan.
    9. Voraprapa Nakavachara & Nuarpear Lekfuangfu, 2017. "Predicting the Present Revisited: The Case of Thailand," PIER Discussion Papers 70, Puey Ungphakorn Institute for Economic Research.
    10. Andree,Bo Pieter Johannes, 2021. "Estimating Food Price Inflation from Partial Surveys," Policy Research Working Paper Series 9886, The World Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    2. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    3. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    4. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    5. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
    6. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    7. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    8. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    10. Benedikt Maas, 2020. "Short‐term forecasting of the US unemployment rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
    11. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    12. France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
    13. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    14. Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
    15. Fornaro, Paolo, 2020. "Nowcasting Industrial Production Using Uncoventional Data Sources," ETLA Working Papers 80, The Research Institute of the Finnish Economy.
    16. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    17. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    18. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    19. Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023. "Factor-based imputation of missing values and covariances in panel data of large dimensions," Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.

    More about this item

    Keywords

    E-Business; Economic Theory&Research; Statistical&Mathematical Sciences; Information and Communication Technologies;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:7398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.