IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v302y2021ics0306261921008837.html
   My bibliography  Save this article

Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow

Author

Listed:
  • González-Ordiano, Jorge Ángel
  • Mühlpfordt, Tillmann
  • Braun, Eric
  • Liu, Jianlei
  • Çakmak, Hüseyin
  • Kühnapfel, Uwe
  • Düpmeier, Clemens
  • Waczowicz, Simon
  • Faulwasser, Timm
  • Mikut, Ralf
  • Hagenmeyer, Veit
  • Appino, Riccardo Remo

Abstract

The uncertainty associated with renewable energies creates challenges in the operation of distribution grids. One way for Distribution System Operators to deal with this is the computation of probabilistic forecasts of the full state of the grid. Recently, probabilistic forecasts have seen increased interest for quantifying the uncertainty of renewable generation and load. However, individual probabilistic forecasts of the state defining variables do not allow the prediction of the probability of joint events, for instance, the probability of two line flows exceeding their limits simultaneously. To overcome the issue of estimating the probability of joint events, we present an approach that combines data-driven probabilistic forecasts (obtained more specifically with quantile regressions) and probabilistic power flow. Moreover, we test the presented method using data from a real-world distribution grid that is part of the Energy Lab 2.0 of the Karlsruhe Institute of Technology and we implement it within a state-of-the-art computational framework.

Suggested Citation

  • González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921008837
    DOI: 10.1016/j.apenergy.2021.117498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008837
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    2. González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
    3. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    4. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    5. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    6. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    7. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    8. Muthamizh Selvam, M. & Gnanadass, R. & Padhy, N.P., 2016. "Initiatives and technical challenges in smart distribution grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 911-917.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    10. Wang, Mingshen & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2017. "Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 1673-1683.
    11. Carpinelli, Guido & Caramia, Pierluigi & Varilone, Pietro, 2015. "Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems," Renewable Energy, Elsevier, vol. 76(C), pages 283-295.
    12. Juban, Romain & Ohlsson, Henrik & Maasoumy, Mehdi & Poirier, Louis & Kolter, J. Zico, 2016. "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1094-1102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    2. Lin, Xiaojie & Mao, Yihui & Chen, Jiaying & Zhong, Wei, 2023. "Dynamic modeling and uncertainty quantification of district heating systems considering renewable energy access," Applied Energy, Elsevier, vol. 349(C).
    3. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Laurent Ferrara & Joseph Yapi, 2022. "Measuring exchange rate risks during periods of uncertainty," International Economics, CEPII research center, issue 170, pages 202-212.
    4. Iddrisu, Abdul-Aziz & Alagidede, Imhotep Paul, 2020. "Monetary policy and food inflation in South Africa: A quantile regression analysis," Food Policy, Elsevier, vol. 91(C).
    5. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    6. Wagner Piazza Gaglianone & Waldyr Dutra Areosa, 2016. "Financial Conditions Indicators for Brazil," Working Papers Series 435, Central Bank of Brazil, Research Department.
    7. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    8. Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
    9. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
    10. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    11. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
    12. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    13. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.
    14. Fernando Eguren-Martin & Andrej Sokol, 2022. "Attention to the Tail(s): Global Financial Conditions and Exchange Rate Risks," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(3), pages 487-519, September.
    15. Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
    16. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    17. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    18. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    19. Lv, Jiaqing & Zheng, Xiaodong & Pawlak, Mirosław & Mo, Weike & Miśkowicz, Marek, 2021. "Very short-term probabilistic wind power prediction using sparse machine learning and nonparametric density estimation algorithms," Renewable Energy, Elsevier, vol. 177(C), pages 181-192.
    20. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:302:y:2021:i:c:s0306261921008837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.