IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics030438002300220x.html
   My bibliography  Save this article

Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour

Author

Listed:
  • dos Anjos, Lucas
  • Weber, Igor Daniel
  • Godoy, Wesley Augusto Conde

Abstract

The fall armyworm (Spodoptera frugiperda Smith & Abbot, 1797, Lepidoptera, Noctuidae) is a widespread agricultural pest native of the Americas. It is a lepidopteran pest with the ability to consume an enormous variety of crops. There are several control strategies, including natural enemies employed to control the pest, particularly egg parasitoids and genetically modified crops with Bacillus thuringiensis Berliner, 1915, Bacillaceae (Bt) toxins. However, the constant use of Bt crops has allowed the emergence of positive selection pressure to create pests increasingly resistant to the toxins. Furthermore, female moths can lay eggs in layers and deposit scales to enhance their defences against egg parasitoids. In the present work, we intend to understand how (i) the attack rate of the parasitoid, (ii) the degree of vulnerability of the eggs to parasitism, and (iii) the mortality caused by Bt toxins affect crop production and the overall dynamics. We developed a tritrophic crop-pest-parasitoid mathematical model to study the fall armyworm dynamics focusing on crop density. Our findings indicate that crop production decreases by approximately 60.03% in the absence of parasitoids. We discuss the results regarding pest resistance to Bt toxins, pest defence against parasitism, and the selection of parasitoids for pest control, and propose potential extensions for future work.

Suggested Citation

  • dos Anjos, Lucas & Weber, Igor Daniel & Godoy, Wesley Augusto Conde, 2023. "Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s030438002300220x
    DOI: 10.1016/j.ecolmodel.2023.110490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002300220X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Xiangmin & Shao, Yuanfu & Wang, Zhen & Luo, Mengzhuo & Fang, Xianjia & Ju, Zhixiang, 2016. "An impulsive two-stage predator–prey model with stage-structure and square root functional responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 91-107.
    2. Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
    3. Kevin Shear McCann, 2000. "The diversity–stability debate," Nature, Nature, vol. 405(6783), pages 228-233, May.
    4. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    2. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    3. Ilan Vertinsky & Yingqiu Kuang & Dongsheng Zhou & Victor Cui, 2023. "The political economy and dynamics of bifurcated world governance and the decoupling of value chains: An alternative perspective," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 54(7), pages 1351-1377, September.
    4. Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    7. J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
    8. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    9. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    10. Sinclair Davidson & Ashton de Silva, 2014. "The Plain Truth about Plain Packaging: An Econometric Analysis of the Australian 2011 Tobacco Plain Packaging Act," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 21(1), pages 27-44.
    11. Maiti, Atasi Patra & Dubey, B. & Chakraborty, A., 2019. "Global analysis of a delayed stage structure prey–predator model with Crowley–Martin type functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 58-84.
    12. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    13. Wu, Haoran, 2024. "ecode: An R package to investigate community dynamics in ordinary differential equation systems," Ecological Modelling, Elsevier, vol. 491(C).
    14. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
    15. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    16. Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
    17. Qinghua Zhao & Paul J. Brink & Chi Xu & Shaopeng Wang & Adam T. Clark & Canan Karakoç & George Sugihara & Claire E. Widdicombe & Angus Atkinson & Shin-ichiro S. Matsuzaki & Ryuichiro Shinohara & Shuiq, 2023. "Relationships of temperature and biodiversity with stability of natural aquatic food webs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Wang, Zhen & Shao, Yuanfu & Fang, Xianjia & Ma, Xiangmin, 2017. "The dynamic behaviors of one-predator two-prey system with mutual interference and impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 68-85.
    19. Frank Davenport & Chris Funk, 2015. "Using time series structural characteristics to analyze grain prices in food insecure countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 1055-1070, October.
    20. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s030438002300220x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.