A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019.
"Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 22/17, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009.
"Hierarchical forecasts for Australian domestic tourism,"
International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007. "Hierarchical forecasts for Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
- Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011.
"The tourism forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008. "The tourism forecasting competition," Monash Econometrics and Business Statistics Working Papers 10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023.
"Probabilistic forecast reconciliation: Properties, evaluation and score optimisation,"
European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation," Monash Econometrics and Business Statistics Working Papers 26/20, Monash University, Department of Econometrics and Business Statistics.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
hierarchical forecasting; electricity consumption; time series; forecasting models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3200-:d:1425416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.