IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v26y2020i4p598-621.html
   My bibliography  Save this article

Univariate and multivariate forecasting of tourism demand using state-space models

Author

Listed:
  • Elisa Jorge-González

    (Universidad de La Laguna, Spain)

  • Enrique González-Dávila

    (Universidad de La Laguna, Spain)

  • Raquel Martín-Rivero

    (Universidad de La Laguna, Spain)

  • Domingo Lorenzo-Díaz

    (Universidad de La Laguna, Spain; Instituto Canario de Estadística (ISTAC), Spain)

Abstract

Tourism forecasting plays a major role in tourism planning and management and it is one of the main economic activities in many countries. For this reason, it is fundamental to provide several models that allow describing and forecasting the tourist demand. International visitants who arrive at a certain tourist destination may come from countries or regions with similar or different customs and behaviours and therefore be able to present correlated arrival patterns. Based on the state-space methods with time-varying parameters, this study develops the application and comparison of univariate and multivariate models in the applied case of German and British tourist at Canary Islands (Spain). The choice of model can be conditioned by the volume of tourists from one country with respect to the other. Structural models will be used incorporating intervention and exogenous variables, among which airline seat reservations for regular flights.

Suggested Citation

  • Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
  • Handle: RePEc:sae:toueco:v:26:y:2020:i:4:p:598-621
    DOI: 10.1177/1354816619857641
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1354816619857641
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1354816619857641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1997. "A note on forecasting international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 13(4), pages 539-549, December.
    2. Silva, Emmanuel Sirimal & Ghodsi, Zara & Ghodsi, Mansi & Heravi, Saeed & Hassani, Hossein, 2017. "Cross country relations in European tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 151-168.
    3. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    4. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886.
    5. Tsui, Wai Hong Kan & Ozer Balli, Hatice & Gilbey, Andrew & Gow, Hamish, 2014. "Forecasting of Hong Kong airport's passenger throughput," Tourism Management, Elsevier, vol. 42(C), pages 62-76.
    6. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
    7. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    8. Gonzalez, Pilar & Moral, Paz, 1995. "An analysis of the international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 11(2), pages 233-251, June.
    9. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    10. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
    11. Jaume Rossello-Nadal, 2001. "Forecasting Turning Points in International Visitor Arrivals in the Balearic Islands," Tourism Economics, , vol. 7(4), pages 365-380, December.
    12. Wai Hong Kan Tsui & Faruk Balli, 2017. "International arrivals forecasting for Australian airports and the impact of tourism marketing expenditure," Tourism Economics, , vol. 23(2), pages 403-428, March.
    13. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    14. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    15. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    16. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    17. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    18. Medeiros, Marcelo C. & McAleer, Michael & Slottje, Daniel & Ramos, Vicente & Rey-Maquieira, Javier, 2008. "An alternative approach to estimating demand: Neural network regression with conditional volatility for high frequency air passenger arrivals," Journal of Econometrics, Elsevier, vol. 147(2), pages 372-383, December.
    19. Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
    20. Song, Haiyan & Hyndman, Rob J., 2011. "Tourism forecasting: An introduction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 817-821, July.
    21. Lindsay W. Turner & Stephen F. Witt, 2001. "Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models," Tourism Economics, , vol. 7(2), pages 135-147, June.
    22. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    23. Jae H. Kim & Imad Moosa, 2001. "Seasonal Behaviour of Monthly International Tourist Flows: Specification and Implications for Forecasting Models," Tourism Economics, , vol. 7(4), pages 381-396, December.
    24. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    25. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    26. Pfeffermann, D. & Allon, J., 1989. "Multivariate exponential smoothing: Method and practice," International Journal of Forecasting, Elsevier, vol. 5(1), pages 83-98.
    27. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    3. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    4. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    5. Nicholas Apergis & Andrea Mervar & James E. Payne, 2017. "Forecasting disaggregated tourist arrivals in Croatia," Tourism Economics, , vol. 23(1), pages 78-98, February.
    6. Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
    7. Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
    8. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    9. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
    12. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    13. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    14. Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
    15. António Rua & Carlos Melo Gouveia & Nuno Lourenço, 2020. "Forecasting tourism with targeted predictors in a data-rich environment," Working Papers w202005, Banco de Portugal, Economics and Research Department.
    16. Hatice Öncel Çekim & Ahmet Koyuncu, 2022. "The Impact of Google Trends on the Tourist Arrivals: A Case of Antalya Tourism," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 1-14, June.
    17. Lourenço, Nuno & Gouveia, Carlos Melo & Rua, António, 2021. "Forecasting tourism with targeted predictors in a data-rich environment," Economic Modelling, Elsevier, vol. 96(C), pages 445-454.
    18. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1997. "A note on forecasting international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 13(4), pages 539-549, December.
    19. Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
    20. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:26:y:2020:i:4:p:598-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.