IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2007-3.html
   My bibliography  Save this paper

The vector innovation structural time series framework: a simple approach to multivariate forecasting

Author

Listed:
  • Ashton de Silva
  • Rob J. Hyndman
  • Ralph D. Snyder

Abstract

The vector innovation structural time series framework is proposed as a way of modelling a set of related time series. Like all multi-series approaches, the aim is to exploit potential inter-series dependencies to improve the fit and forecasts. A key feature of the framework is that the series are decomposed into common components such as trend and seasonal effects. Equations that describe the evolution of these components through time are used as the sole way of representing the inter-temporal dependencies. The approach is illustrated on a bivariate data set comprising Australian exchange rates of the UK pound and US dollar. Its forecasting capacity is compared to other common single- and multi-series approaches in an experiment using time series from a large macroeconomic database.

Suggested Citation

  • Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007. "The vector innovation structural time series framework: a simple approach to multivariate forecasting," Monash Econometrics and Business Statistics Working Papers 3/07, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2007-3
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2007/wp3-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, July.
    2. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    3. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    4. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    5. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    6. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    7. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    8. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    11. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    2. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    3. de Silva, Ashton & Hyndman, Rob J. & Snyder, Ralph, 2009. "A multivariate innovations state space Beveridge-Nelson decomposition," Economic Modelling, Elsevier, vol. 26(5), pages 1067-1074, September.
    4. Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2015. "Forecasting Multivariate Time Series with the Theta Method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 220-229, April.
    5. George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
    6. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    7. Konstantin Chirikhin & Boris Ryabko, 2021. "Compression-Based Methods of Time Series Forecasting," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    8. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    2. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    5. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    6. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
    7. Weber, Enzo, 2006. "British interest rate convergence between the US and Europe: A recursive cointegration analysis," SFB 649 Discussion Papers 2006-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
    9. Barrera, Carlos R., 2011. "Impacto amplificador del ajuste de inventarios ante choques de demanda según especificaciones flexibles," Working Papers 2011-009, Banco Central de Reserva del Perú.
    10. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    11. Anton Muscatelli, V. & Spinelli, Franco & Trecroci, Carmine, 2007. "Macroeconomic shocks, structural change and real exchange rates: Evidence from historical data," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1403-1423, December.
    12. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    13. Enzo Weber, 2006. "British Interest Rate Convergence Between The Us And Europe: A Recursive Cointegration Analysis," The IUP Journal of Monetary Economics, IUP Publications, vol. 0(4), pages 29-47, November.
    14. Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
    15. Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
    16. Bettendorf, Timo, 2017. "Investigating Global Imbalances: Empirical evidence from a GVAR approach," Economic Modelling, Elsevier, vol. 64(C), pages 201-210.
    17. Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
    18. Schleer, Frauke & Semmler, Willi, 2013. "Financial sector-output dynamics in the euro area: Non-linearities reconsidered," ZEW Discussion Papers 13-068, ZEW - Leibniz Centre for European Economic Research.
    19. Ralph D. Snyder & Anne B. Koehler & Rob J. Hyndman & J. Keith Ord, 2002. "Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand," Monash Econometrics and Business Statistics Working Papers 3/02, Monash University, Department of Econometrics and Business Statistics.
    20. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.

    More about this item

    Keywords

    Vector innovation structural time series; state space model; multivariate time series; exponential smoothing; forecast comparison; vector autoregression.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2007-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.