IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1721-1733.html
   My bibliography  Save this article

A loss discounting framework for model averaging and selection in time series models

Author

Listed:
  • Bernaciak, Dawid
  • Griffin, Jim E.

Abstract

We introduce a loss discounting framework for model and forecast combination, which generalises and combines Bayesian model synthesis and generalized Bayes methodologies. We use a loss function to score the performance of different models and introduce a multilevel discounting scheme that allows for a flexible specification of the dynamics of the model weights. This novel and simple model combination approach can be easily applied to large-scale model averaging/selection, handle unusual features such as sudden regime changes and be tailored to different forecasting problems. We compare our method to established and state-of-the-art methods for several macroeconomic forecasting examples. The proposed method offers an attractive, computationally efficient alternative to the benchmark methodologies and often outperforms more complex techniques.

Suggested Citation

  • Bernaciak, Dawid & Griffin, Jim E., 2024. "A loss discounting framework for model averaging and selection in time series models," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1721-1733.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1721-1733
    DOI: 10.1016/j.ijforecast.2024.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision Synthesis in Monetary Policy," Staff Working Papers 24-30, Bank of Canada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1721-1733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.