IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v32y2016i3p1074-1080.html
   My bibliography  Save this article

K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting

Author

Listed:
  • Zhang, Yao
  • Wang, Jianxue

Abstract

Probabilistic forecasts provide quantitative information in relation to energy uncertainty, which is essential for making better decisions on the operation of power systems with an increasing penetration of wind power. On the basis of the k-nearest neighbors algorithm and a kernel density estimator method, this paper presents a general framework for the probabilistic forecasting of renewable energy generation, especially for wind power generation. It is a direct and non-parametric approach. Firstly, the k-nearest neighbors algorithm is used to find the k closest historical examples with characteristics similar to the future weather condition of wind power generation. Secondly, a novel kernel density estimator based on a logarithmic transformation and a boundary kernel is used to construct wind power predictive density based on the k closest historical examples. The effectiveness of this approach has been confirmed on the real data provided for GEFCom2014. The evaluation results show that the proposed approach can provide good quality, reliable probabilistic wind power forecasts.

Suggested Citation

  • Zhang, Yao & Wang, Jianxue, 2016. "K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1074-1080.
  • Handle: RePEc:eee:intfor:v:32:y:2016:i:3:p:1074-1080
    DOI: 10.1016/j.ijforecast.2015.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207015001417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2015.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Hong, 2014. "Energy Forecasting: Past, Present, and Future," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
    2. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    3. Mangalova, E. & Agafonov, E., 2014. "Wind power forecasting using the k-nearest neighbors algorithm," International Journal of Forecasting, Elsevier, vol. 30(2), pages 402-406.
    4. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    5. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
    2. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    3. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    4. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    5. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    6. Guan, Qing & An, Haizhong, 2017. "The exploration on the trade preferences of cooperation partners in four energy commodities’ international trade: Crude oil, coal, natural gas and photovoltaic," Applied Energy, Elsevier, vol. 203(C), pages 154-163.
    7. Shantanu Chakraborty & Remco Verzijlbergh & Kyri Baker & Milos Cvetkovic & Laurens De Vries & Zofia Lukszo, 2020. "A Coordination Mechanism For Reducing Price Spikes in Distribution Grids," Energies, MDPI, vol. 13(10), pages 1-24, May.
    8. Yao Zhang & Fan Lin & Ke Wang, 2020. "Robustness of Short-Term Wind Power Forecasting against False Data Injection Attacks," Energies, MDPI, vol. 13(15), pages 1-21, July.
    9. M. Mujahid Rafique & Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems, 2018. "Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions," Energies, MDPI, vol. 11(8), pages 1-18, August.
    10. Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
    11. Gerardo J. Osório & Miadreza Shafie-khah & Juan M. Lujano-Rojas & João P. S. Catalão, 2018. "Scheduling Model for Renewable Energy Sources Integration in an Insular Power System," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Luis M. López-Manrique & E. V. Macias-Melo & O. May Tzuc & A. Bassam & K. M. Aguilar-Castro & I. Hernández-Pérez, 2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)," Energies, MDPI, vol. 11(11), pages 1-22, November.
    13. Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
    14. Abeer Alshejari & Vassilis S. Kodogiannis & Stavros Leonidis, 2020. "Development of Neurofuzzy Architectures for Electricity Price Forecasting," Energies, MDPI, vol. 13(5), pages 1-24, March.
    15. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).
    17. Yao Zhang & Wenxuan Yao & Shutang You & Wenpeng Yu & Ling Wu & Yi Cui & Yilu Liu, 2017. "Impacts of Power Grid Frequency Deviation on Time Error of Synchronous Electric Clock and Worldwide Power System Practices on Time Error Correction," Energies, MDPI, vol. 10(9), pages 1-15, August.
    18. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.
    19. Qingtao Li & Jianxue Wang & Yao Zhang & Yue Fan & Guojun Bao & Xuebin Wang, 2020. "Multi-Period Generation Expansion Planning for Sustainable Power Systems to Maximize the Utilization of Renewable Energy Sources," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    20. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    21. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Mangalova, Ekaterina & Shesterneva, Olesya, 2016. "K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1067-1073.
    3. de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
    4. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    6. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    9. Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
    10. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    11. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    12. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    13. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    14. Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
    15. Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
    16. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    17. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
    18. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    19. Yang Hu & Yilin Qiao & Jingchun Chu & Ling Yuan & Lei Pan, 2019. "Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure," Energies, MDPI, vol. 12(11), pages 1-21, June.
    20. Huang, Jing & Perry, Matthew, 2016. "A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1081-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:32:y:2016:i:3:p:1074-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.