IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v20y2004i4p529-549.html
   My bibliography  Save this article

Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program

Author

Listed:
  • Miller, Don M.
  • Williams, Dan

Abstract

No abstract is available for this item.

Suggested Citation

  • Miller, Don M. & Williams, Dan, 2004. "Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program," International Journal of Forecasting, Elsevier, vol. 20(4), pages 529-549.
  • Handle: RePEc:eee:intfor:v:20:y:2004:i:4:p:529-549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(04)00035-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    2. Bunn, Derek W. & Vassilopoulos, Angelos I., 1999. "Comparison of seasonal estimation methods in multi-item short-term forecasting," International Journal of Forecasting, Elsevier, vol. 15(4), pages 431-443, October.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    5. Greis, Noel P. & Gilstein, C. Zachary, 1991. "Empirical Bayes methods for telecommunications forecasting," International Journal of Forecasting, Elsevier, vol. 7(2), pages 183-197, August.
    6. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    7. Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
    8. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. Tomas Sobotka & Maria Winkler-Dworak & Maria Rita Testa & Wolfgang Lutz & Dimiter Philipov & Henriette Engelhardt & Richard Gisser, 2005. "Monthly Estimates of the Quantum of Fertility: Towards a Fertility Monitoring System in Austria," VID Working Papers 0501, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    4. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    5. Ashley Langer & Nathan H. Miller, 2008. "Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy," EAG Discussions Papers 200811, Department of Justice, Antitrust Division.
    6. So, Mike K.P. & Chung, Ray S.W., 2014. "Dynamic seasonality in time series," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 212-226.
    7. Ladiray, Dominique & Quenneville, Benoit, 2004. "Implementation issues on shrinkage estimators for seasonal factors within the X-11 seasonal adjustment method," International Journal of Forecasting, Elsevier, vol. 20(4), pages 557-560.
    8. Chen, Huijing & Boylan, John E., 2008. "Empirical evidence on individual, group and shrinkage seasonal indices," International Journal of Forecasting, Elsevier, vol. 24(3), pages 525-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    4. Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
    5. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
    6. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    7. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    8. Madden, Gary & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
    9. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2019. "Forecasting with a hybrid method utilizing data smoothing, a variation of the Theta method and shrinkage of seasonal factors," International Journal of Production Economics, Elsevier, vol. 209(C), pages 92-102.
    10. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    11. Armstrong, J. Scott, 2004. "Damped seasonality factors: Introduction," International Journal of Forecasting, Elsevier, vol. 20(4), pages 525-527.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    14. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    15. Phinikarides, Alexander & Makrides, George & Zinsser, Bastian & Schubert, Markus & Georghiou, George E., 2015. "Analysis of photovoltaic system performance time series: Seasonality and performance loss," Renewable Energy, Elsevier, vol. 77(C), pages 51-63.
    16. Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2020. "Card forecasts for M4," International Journal of Forecasting, Elsevier, vol. 36(1), pages 129-134.
    17. Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
    18. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    19. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    20. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:20:y:2004:i:4:p:529-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.