IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i2p517-533.html
   My bibliography  Save this article

Variational Bayesian functional PCA

Author

Listed:
  • van der Linde, Angelika

Abstract

A Bayesian approach to analyze the modes of variation in a set of curves is suggested. It is based on a generative model thus allowing for noisy and sparse observations of curves. A Demmler-Reinsch(-type) basis is used to enforce smoothness of the latent ('eigen')functions. Inference, including estimation, error assessment and model choice, particularly the choice of the number of eigenfunctions and their degree of smoothness, is derived from a variational approximation of the posterior distribution. The proposed analysis is illustrated with simulated and real data.

Suggested Citation

  • van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:517-533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00440-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouzas, P.R. & Valderrama, M.J. & Aguilera, A.M. & Ruiz-Fuentes, N., 2006. "Modelling the mean of a doubly stochastic Poisson process by functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2655-2667, June.
    2. Angelika Linde, 2001. "Estimating the smoothing parameter in generalized spline-based regression," Computational Statistics, Springer, vol. 16(1), pages 73-95, March.
    3. Ana Aguilera & Francisco Ocaña & Mariano Valderrama, 1999. "Forecasting with unequally spaced data by a functional principal component approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 233-253, June.
    4. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
    5. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    6. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    7. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    8. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    9. Sam Behseta & Robert E. Kass & Garrick L. Wallstrom, 2005. "Hierarchical models for assessing variability among functions," Biometrika, Biometrika Trust, vol. 92(2), pages 419-434, June.
    10. Mante, Claude & Yao, Anne-Francoise & Degiovanni, Claude, 2007. "Principal component analysis of measures, with special emphasis on grain-size curves," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4969-4983, June.
    11. Ocaña, F. A. & Aguilera, A. M. & Valderrama, M. J., 1999. "Functional Principal Components Analysis by Choice of Norm," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 262-276, November.
    12. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    13. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    14. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    15. P. Bouzas & N. Ruiz-Fuentes & F. Ocaña, 2007. "Functional approach to the random mean of a compound Cox process," Computational Statistics, Springer, vol. 22(3), pages 467-479, September.
    16. Angelika Linde, 2001. "Estimating the smoothing parameter in generalized spline-based regression," Computational Statistics, Springer, vol. 16(1), pages 43-71, March.
    17. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    18. Smidl, Vaclav & Quinn, Anthony, 2007. "On Bayesian principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4101-4123, May.
    19. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2006. "Using principal components for estimating logistic regression with high-dimensional multicollinear data," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1905-1924, April.
    20. R. Fernández-Alcalá & J. Navarro-Moreno & J. Ruiz-Molina, 2007. "Functional estimation incorporating prior correlation information," Computational Statistics, Springer, vol. 22(3), pages 439-447, September.
    21. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    22. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    23. Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
    24. Daniel Gervini, 2006. "Free‐knot spline smoothing for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 671-687, September.
    25. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    26. A. Linde, 1995. "Splines from a Bayesian point of view," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 63-81, June.
    27. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    28. Hans‐Georg Müller, 2005. "Functional Modelling and Classification of Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 223-240, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    2. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    3. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    4. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    5. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    6. Julia Wrobel & Vadim Zipunnikov & Jennifer Schrack & Jeff Goldsmith, 2019. "Registration for exponential family functional data," Biometrics, The International Biometric Society, vol. 75(1), pages 48-57, March.
    7. Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
    8. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    2. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
    3. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    4. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    5. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    6. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    7. Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
    8. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    9. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    10. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    11. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    12. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    13. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    14. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    15. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    16. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    17. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.
    18. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    19. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    20. Ferraty, Frédéric & Vieu, Philippe, 2009. "Additive prediction and boosting for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1400-1413, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:517-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.