Estimation and Prediction of Shipping Trends with the Data-Driven Haar-Fisz Transform
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fryzlewicz, Piotr & Delouille, V´eronique & Nason, Guy P., 2007. "GOES-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform," LSE Research Online Documents on Economics 25221, London School of Economics and Political Science, LSE Library.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Piotr Fryzlewicz & Véronique Delouille & Guy P. Nason, 2007. "GOES‐8 X‐ray sensor variance stabilization using the multiscale data‐driven Haar–Fisz transform," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 99-116, January.
- Antonis A Michis, 2015. "A wavelet smoothing method to improve conditional sales forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 832-844, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
- Antonis A. Michis, 2021. "Wavelet Multidimensional Scaling Analysis of European Economic Sentiment Indicators," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 443-480, October.
- Guy P. Nason & Daniel Bailey, 2008. "Estimating the intensity of conflict in Iraq," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 899-914, October.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015.
"Forecasting aggregate retail sales: The case of South Africa,"
International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
- Goodness C. Aye & Mehmet Balcilar Author-Name-First Mehmet & Rangan Gupta & Anandamayee Majumdar, 2014. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 15-21, Eastern Mediterranean University, Department of Economics.
- Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017.
"Visualising forecasting algorithm performance using time series instance spaces,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016. "Visualising forecasting Algorithm Performance using Time Series Instance Spaces," Monash Econometrics and Business Statistics Working Papers 10/16, Monash University, Department of Econometrics and Business Statistics.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
More about this item
Keywords
Shipping; trend; wavelets; Data-Driven Haar-Fisz Transform;All these keywords.
JEL classification:
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cyb:wpaper:2015-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Markidou (email available below). General contact details of provider: https://edirc.repec.org/data/cbcgvcy.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.