IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i1p19-d1596045.html
   My bibliography  Save this article

Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling

Author

Listed:
  • Manuela Royer-Carenzi

    (I2M, UMR 7373 Aix-Marseille University, CNRS, 13331 Marseille, France
    These authors contributed equally to this work.)

  • Hossein Hassani

    (International Institute for Applied Systems Analysis (IIASA), Schloßpl. 1, 2361 Laxenburg, Austria
    These authors contributed equally to this work.)

Abstract

The identification of the orders of time series models plays a crucial role in their accurate specification and forecasting. The Autocorrelation Function (ACF) is commonly used to identify the order q of Moving Average (MA( q )) models, as it theoretically vanishes for lags beyond q . This property is widely used in model selection, assuming the sample ACF follows an asymptotic normal distribution for robustness. However, our examination of the sum of the sample ACF reveals inconsistencies with these theoretical properties, highlighting a deviation from normality in the sample ACF for MA( q ) processes. As a natural extension of the ACF, the Extended Autocorrelation Function (EACF) provides additional insights by facilitating the simultaneous identification of both autoregressive and moving average components. Using simulations, we evaluate the performance of q -order identification in MA( q ) models, which is based on the properties of ACF. Similarly, for ARMA( p , q ) models, we assess the ( p , q )-order identification relying on EACF. Our findings indicate that both methods are effective for sufficiently long time series but may incorrectly favor an ARMA( p , q − 1 ) model when the a q coefficient approaches zero. Additionally, if the cumulative sums of ACF (SACF) behave consistently and the Ljung–Box test validates the proposed model, it can serve as a strong candidate. The proposed models should then be compared based on their predictive performance. We illustrate our methodology with an application to wind speed data and sea surface temperature anomalies, providing practical insights into the relevance of our findings.

Suggested Citation

  • Manuela Royer-Carenzi & Hossein Hassani, 2025. "Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling," Stats, MDPI, vol. 8(1), pages 1-37, February.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:1:p:19-:d:1596045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Yang, Yu & Qin, Shijie & Liao, Shijun, 2023. "Ultra-chaos of a mobile robot: A higher disorder than normal-chaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    4. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    5. Hassani, Hossein & Leonenko, Nikolai & Patterson, Kerry, 2012. "The sample autocorrelation function and the detection of long-memory processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6367-6379.
    6. Hossein Hassani & Leila Marvian Mashhad & Manuela Royer-Carenzi & Mohammad Reza Yeganegi & Nadejda Komendantova, 2025. "White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting," Forecasting, MDPI, vol. 7(1), pages 1-14, February.
    7. O. Anderson, 1977. "An appraisal of the Box-Jenkins approach to univariate time series analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(1), pages 187-194, December.
    8. Mohamed Boutahar & Velayoudom Marimoutou & Leila Nouira, 2007. "Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(3), pages 261-301.
    9. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    2. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    3. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. repec:ebl:ecbull:v:3:y:2006:i:13:p:1-9 is not listed on IDEAS
    6. Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
    7. repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
    8. Emanuela Marrocu, 2006. "An Investigation of the Effects of Data Transformation on Nonlinearity," Empirical Economics, Springer, vol. 31(4), pages 801-820, November.
    9. McWilliams, William N. & Isengildina Massa, Olga & Stewart, Shamar L., 2024. "Annual Food Price Inflation Forecasting: A Macroeconomic Random Forest Approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343923, Agricultural and Applied Economics Association.
    10. Lange, Steffen & Pütz, Peter & Kopp, Thomas, 2018. "Do Mature Economies Grow Exponentially?," Ecological Economics, Elsevier, vol. 147(C), pages 123-133.
    11. Johan Lyhagen, 2006. "The seasonal KPSS statistic," Economics Bulletin, AccessEcon, vol. 3(13), pages 1-9.
    12. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    13. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
    14. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    15. Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
    16. Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
    17. Hossein Hassani & Leila Marvian Mashhad & Manuela Royer-Carenzi & Mohammad Reza Yeganegi & Nadejda Komendantova, 2025. "White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting," Forecasting, MDPI, vol. 7(1), pages 1-14, February.
    18. Fröhlich Markus, 2018. "Nowcasting Austrian Short Term Statistics," Journal of Official Statistics, Sciendo, vol. 34(2), pages 503-522, June.
    19. Naomi Muggleton & Charles Rahal & Aaron Reeves, 2025. "Capitalizing on a Crisis: A Computational Analysis of all Five Million British Firms During the Covid-19 Pandemic," Papers 2502.09383, arXiv.org, revised Feb 2025.
    20. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    21. Kandil, Magda & Woods, Jeffrey G., 1995. "A cross-industry examination of the Lucas misperceptions model," Journal of Macroeconomics, Elsevier, vol. 17(1), pages 55-76.
    22. Herrera, Santiago, 2000. "Determinantes y composición del endeudamiento público en Colombia," IDB Publications (Working Papers) 2110, Inter-American Development Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:1:p:19-:d:1596045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.