IDEAS home Printed from https://ideas.repec.org/e/c/pgh7.html
   My authors  Follow this author

Eric Ghysels

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1998. "Bayesian inference for periodic regime-switching models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 129-143.

    Mentioned in:

    1. Bayesian inference for periodic regime-switching models (Journal of Applied Econometrics 1998) in ReplicationWiki ()
  2. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.

    Mentioned in:

    1. Detecting multiple breaks in financial market volatility dynamics (Journal of Applied Econometrics 2002) in ReplicationWiki ()

Working papers

  1. Christian Brownlees & Benjamin Chabot & Eric Ghysels & Christopher J. Kurz, 2015. "Backtesting Systemic Risk Measures During Historical Bank Runs," Working Paper Series WP-2015-9, Federal Reserve Bank of Chicago.

    Cited by:

    1. Kreis, Yvonne & Leisen, Dietmar P.J., 2018. "Systemic risk in a structural model of bank default linkages," Journal of Financial Stability, Elsevier, vol. 39(C), pages 221-236.
    2. Baumöhl, Eduard & Bouri, Elie & Hoang, Thi-Hong-Van & Shahzad, Syed Jawad Hussain & Výrost, Tomáš, 2020. "Increasing systemic risk during the Covid-19 pandemic: A cross-quantilogram analysis of the banking sector," EconStor Preprints 222580, ZBW - Leibniz Information Centre for Economics.
    3. Borri, Nicola & Giorgio, Giorgio di, 2022. "Systemic risk and the COVID challenge in the european banking sector," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Sanjiv R. Das & Kris James Mitchener & Angela Vossmeyer, 2018. "Bank Regulation, Network Topology, and Systemic Risk: Evidence from the Great Depression," NBER Working Papers 25405, National Bureau of Economic Research, Inc.
    5. Viral V. Acharya & Christian Brownlees & Robert Engle & Farhang Farazmand & Matthew Richardson, 2013. "Measuring Systemic Risk," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 3, pages 65-98, World Scientific Publishing Co. Pte. Ltd..
    6. Gilbert Colletaz & Grégory Levieuge & Alexandra Popescu, 2018. "Monetary policy and long-run systemic risk-taking," Post-Print hal-02162296, HAL.
    7. Peter Grundke, 2019. "Ranking consistency of systemic risk measures: a simulation-based analysis in a banking network model," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 953-990, May.
    8. Mitchener, Kris & Das, Sanjiv & Vossmeyer, Angela, 2018. "Bank Regulation, Network Topology, and Systemic Risk: Evidence from the Great Depression," CEPR Discussion Papers 13416, C.E.P.R. Discussion Papers.
    9. Busch, Pascal & Cappelletti, Giuseppe & Marincas, Vlad & Meller, Barbara & Wildmann, Nadya, 2021. "How useful is market information for the identification of G-SIBs?," Occasional Paper Series 260, European Central Bank.
    10. Kremer, Manfred & Chavleishvili, Sulkhan, 2021. "Measuring Systemic Financial Stress and its Impact on the Macroeconomy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242346, Verein für Socialpolitik / German Economic Association.
    11. Chavleishvili, Sulkhan & Engle, Robert F. & Fahr, Stephan & Kremer, Manfred & Manganelli, Simone & Schwaab, Bernd, 2021. "The risk management approach to macro-prudential policy," Working Paper Series 2565, European Central Bank.

  2. Benjamin Chabot & Eric Ghysels & Ravi Jagannathan, 2014. "Momentum Trading, Return Chasing, and Predictable Crashes," NBER Working Papers 20660, National Bureau of Economic Research, Inc.

    Cited by:

    1. Afees A. Salisu & Juncal Cuñado & Kazeem Isah & Rangan Gupta, 2021. "Stock markets and exchange rate behavior of the BRICS," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1581-1595, December.
    2. Adam Zaremba, 2019. "The Cross Section of Country Equity Returns: A Review of Empirical Literature," JRFM, MDPI, vol. 12(4), pages 1-26, October.
    3. Cenedese, Gino & Payne, Richard & Sarno, Lucio & Valente, Giorgio, 2015. "What do stock markets tell us about exchange rates?," Bank of England working papers 537, Bank of England.
    4. Wang, Xinjie & Xiao, Yaqing & Yan, Hongjun & Zhang, Jinfan, 2021. "Under-reaction in the sovereign CDS market," Journal of Banking & Finance, Elsevier, vol. 130(C).
    5. Dobrynskaya, Victoria, 2019. "Avoiding momentum crashes: Dynamic momentum and contrarian trading," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    6. Lee, Hsiu-Chuan & Lee, Yun-Huan & Lu, Yang-Cheng & Wang, Yu-Chun, 2020. "States of psychological anchors and price behavior of Japanese yen futures," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    7. Renata Guobužaitė & Deimantė Teresienė, 2021. "Can Economic Factors Improve Momentum Trading Strategies? The Case of Managed Futures during the COVID-19 Pandemic," Economies, MDPI, vol. 9(2), pages 1-16, May.
    8. Jung, JiYong & Jung, Kuk Mo, 2021. "Stock market uncertainty and uncovered equity parity deviation: Evidence from Asia," Journal of Asian Economics, Elsevier, vol. 73(C).
    9. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    10. Gehrig, Thomas & Fohlin, Caroline & Haas, Marlene, 2015. "Rumors and Runs in Opaque Markets: Evidence from the Panic of 1907," CEPR Discussion Papers 10497, C.E.P.R. Discussion Papers.
    11. Jung, Kuk Mo, 2015. "Liquidity Risk and Time-Varying Correlation Between Equity and Currency Returns," MPRA Paper 67416, University Library of Munich, Germany.
    12. Alquist, Ron & Chabot, Benjamin R. & Yamarthy, Ram, 2022. "The price of property rights: Institutions, finance, and economic growth," Journal of International Economics, Elsevier, vol. 137(C).
    13. Stephen A. Gorman & Frank J. Fabozzi, 2023. "Alternative risk premium: specification noise," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 459-473, October.
    14. Victoria Dobrynskaya, 2017. "Dynamic Momentum and Contrarian Trading," HSE Working papers WP BRP 61/FE/2017, National Research University Higher School of Economics.
    15. Aftab, Muhammad & Ahmad, Rubi & Ismail, Izlin, 2018. "Examining the uncovered equity parity in the emerging financial markets," Research in International Business and Finance, Elsevier, vol. 45(C), pages 233-242.

  3. Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.

    Cited by:

    1. Thunström, Linda & Nordström, Jonas & Shogren, Jason F., 2015. "Certainty and overconfidence in future preferences for food," Journal of Economic Psychology, Elsevier, vol. 51(C), pages 101-113.
    2. Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020. "Do Expert Experience and Characteristics Affect Inflation Forecasts?," Bank of Israel Working Papers 2020.11, Bank of Israel.
    3. Carola Conces Binder & Rodrigo Sekkel, 2023. "Central Bank Forecasting: A Survey," Staff Working Papers 23-18, Bank of Canada.
    4. Carlos Diaz Vela, 2016. "Extracting the Information Shocks from the Bank of England Inflation Density Forecasts," Discussion Papers in Economics 16/13, Division of Economics, School of Business, University of Leicester.
    5. Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
    6. Fernanda Nechio, 2015. "Have long-term inflation expectations declined?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    7. Hartmann, Philipp & Smets, Frank, 2018. "The first twenty years of the European Central Bank: monetary policy," CEPR Discussion Papers 13411, C.E.P.R. Discussion Papers.
    8. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2024. "The bias of the ECB inflation projections: A State-dependent analysis," Bank of Finland Research Discussion Papers 4/2024, Bank of Finland.
    9. Niko Hauzenberger & Florian Huber & Luca Onorante, 2021. "Combining shrinkage and sparsity in conjugate vector autoregressive models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
    10. Michael Cai & Marco Del Negro & Marc Giannoni & Abhi Gupta & Pearl Li & Erica Moszkowski, 2018. "DSGE forecasts of the lost recovery," Staff Reports 844, Federal Reserve Bank of New York.
    11. Lorenzo Burlon & Simone Emiliozzi & Alessandro Notarpietro & Massimiliano Pisani, 2015. "Medium-term forecasting of euro-area macroeconomic variables with DSGE and BVARX models," Questioni di Economia e Finanza (Occasional Papers) 257, Bank of Italy, Economic Research and International Relations Area.
    12. Iversen, Jens & Laséen, Stefan & Lundvall, Henrik & Söderström, Ulf, 2016. "Real-Time Forecasting for Monetary Policy Analysis: The Case of Sveriges Riksbank," Working Paper Series 318, Sveriges Riksbank (Central Bank of Sweden).
    13. Hwee Kwan Chow & Keen Meng Choy, 2023. "Economic forecasting in a pandemic: some evidence from Singapore," Empirical Economics, Springer, vol. 64(5), pages 2105-2124, May.
    14. Eleni Argiri & Stephen G. Hall & Angeliki Momtsia & Daphne Marina Papadopoulou & Ifigeneia Skotida & George S. Tavlas & Yongli Wang, 2024. "An evaluation of the inflation forecasting performance of the European Central Bank, the Federal Reserve, and the Bank of England," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 932-947, July.
    15. Michal Franta & Jan Libich, 2024. "Holding the economy by the tail: analysis of short- and long-run macroeconomic risks," Empirical Economics, Springer, vol. 66(4), pages 1443-1489, April.
    16. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
    17. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021. "Expecting the unexpected: economic growth under stress," Working Papers 202106, University of California at Riverside, Department of Economics.
    18. Boriss Siliverstovs, 2021. "New York FED Staff Nowcasts and Reality: What Can We Learn about the Future, the Present, and the Past?," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
    19. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    21. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    22. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    23. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    24. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    25. Eleonora Granziera & Pirkka Jalasjoki & Maritta Paloviita, 2021. "The Bias and Efficiency of the ECB Inflation Projections: a State Dependent Analysis," Working Paper 2021/1, Norges Bank.
    26. Pierre L. Siklos, 2017. "What has publishing inflation forecasts accomplished? Central banks and their competitors," CAMA Working Papers 2017-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    27. Fabio Ashtar Telarico, 2021. "Forecasting pandemic tax revenues in a small, open economy," Papers 2112.15431, arXiv.org.
    28. Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Papers No 1/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    29. Nicolaas Johannes Odendaal & Monique Reid, 2018. "Media based sentiment indices as an alternative measure of consumer confidence," Working Papers 17/2018, Stellenbosch University, Department of Economics.
    30. Kevin J. Lansing & Benjamin Pyle, 2015. "Persistent overoptimism about economic growth," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    31. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    32. Sephton, Peter & Mann, Janelle, 2018. "Gold and crude oil prices after the great moderation," Energy Economics, Elsevier, vol. 71(C), pages 273-281.
    33. Granziera, Eleonora & Jalasjoki, Pirkka & Paloviita, Maritta, 2021. "The bias and efficiency of the ECB inflation projections: A state dependent analysis," Bank of Finland Research Discussion Papers 7/2021, Bank of Finland.
    34. Goodhart, C. A. E. & Pradhan, Manoj, 2023. "A snapshot of Central Bank (two year) forecasting: a mixed picture," LSE Research Online Documents on Economics 118680, London School of Economics and Political Science, LSE Library.
    35. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    36. Carola Binder & Wesley Janson & Randal J. Verbrugge, 2019. "Thinking Outside the Box: Do SPF Respondents Have Anchored Inflation Expectations?," Working Papers 19-15, Federal Reserve Bank of Cleveland.
    37. Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    38. Paloviita, Maritta & Haavio, Markus & Jalasjoki, Pirkka & Kilponen, Juha, 2017. "What does "below, but close to, two percent" mean? Assessing the ECB's reaction function with real time data," Bank of Finland Research Discussion Papers 29/2017, Bank of Finland.
    39. Binder, Michael & Lieberknecht, Philipp & Quintana, Jorge & Wieland, Volker, 2017. "Model uncertainty in macroeconomics: On the implications of financial frictions," IMFS Working Paper Series 114, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    40. James Mitchell & Martin Weale, 2021. "Censored Density Forecasts: Production and Evaluation," Working Papers 21-12R, Federal Reserve Bank of Cleveland, revised 16 Aug 2022.
    41. Gary Koop & Stuart McIntyre & James Mitchell, 2018. "UK Regional Nowcasting using a Mixed Frequency Vector Autoregressive Model," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-07, Economic Statistics Centre of Excellence (ESCoE).
    42. Philipp Hartman & Frank Smets, 2018. "The European Central Bank’s Monetary Policy during Its First 20 Years," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 1-146.
    43. Barrera Chaupis, Carlos, 2016. "Expectations' Dispersion & Convergence towards Central Banks' IR forecasts: Chile, Colombia, Mexico, Peru & United Kingdom, 2004-2014," MPRA Paper 85410, University Library of Munich, Germany, revised 12 Dec 2016.
    44. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    45. Łyziak, Tomasz & Paloviita, Maritta, 2018. "On the formation of inflation expectations in turbulent times: The case of the euro area," Economic Modelling, Elsevier, vol. 72(C), pages 132-139.
    46. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    47. Tai Young-Taft, 2015. "Marx's Theory of Money and 21st-century Macrodynamics," Economics Working Paper Archive wp_841, Levy Economics Institute.
    48. Maritta Paloviita & Markus Haavio & Pirkka Jalasjoki & Juha Kilponen, 2021. "What Does "Below, but Close to, 2 Percent" Mean? Assessing the ECB's Reaction Function with Real-Time Data," International Journal of Central Banking, International Journal of Central Banking, vol. 17(2), pages 125-169, June.
    49. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    50. Kapur, Muneesh, 2018. "Macroeconomic Policies and Transmission Dynamics in India," MPRA Paper 88566, University Library of Munich, Germany.
    51. James Cust & David Mihalyi, 2017. "Evidence for a Presource Curse? Oil discoveries, Elevated Expectations, and Growth Disappointments," OxCarre Working Papers 193, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    52. Todd E. Clark & Edward S. Knotek & Saeed Zaman, 2015. "Measuring Inflation Forecast Uncertainty," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2015(03), pages 1-6, March.
    53. Carola Binder & Wesley Janson & Randal Verbrugge, 2023. "Out of Bounds: Do SPF Respondents Have Anchored Inflation Expectations?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 559-576, March.
    54. Nikolaos Giannellis & Stephen G. Hall & Georgios P. Kouretas & George S. Tavlas, 2024. "Forecasting in turbulent times," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 819-826, July.
    55. Zhang, Hanyuan & Song, Haiyan & Wen, Long & Liu, Chang, 2021. "Forecasting tourism recovery amid COVID-19," Annals of Tourism Research, Elsevier, vol. 87(C).
    56. Salvador Climent-Serrano, 2017. "Econometric Model to Estimate Defaults on Payment in the Spanish Financial Sector in Oliver Wyman¡¯s Stress Tests," Applied Finance and Accounting, Redfame publishing, vol. 3(1), pages 24-35, February.
    57. Łyziak, Tomasz & Paloviita, Maritta, 2017. "Formation of inflation expectations in turbulent times: Can ECB manage inflation expectations of professional forecasters?," Bank of Finland Research Discussion Papers 13/2017, Bank of Finland.
    58. Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
    59. Fabio Ashtar Telarico, 2021. "Прогнозиране На Данъчните Приходи При Пандемия В Малка Отворена Икономика [Forecasting pandemic tax revenues in a small, open economy]," Post-Print hal-03500128, HAL.
    60. Tura-Gawron, Karolina, 2019. "Consumers’ approach to the credibility of the inflation forecasts published by central banks: A new methodological solution," Journal of Macroeconomics, Elsevier, vol. 62(C).
    61. Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
    62. Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
    63. Jin-Kyu Jung & Michael Frenkel & Jan-Christoph Rülke, 2019. "On the consistency of central banks´ interest rate forecasts," Economics Bulletin, AccessEcon, vol. 39(1), pages 701-716.
    64. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).

  4. Robert Engle & Michael J. Fleming & Eric Ghysels & Giang Nguyen, 2012. "Liquidity and volatility in the U.S. treasury market," Staff Reports 590, Federal Reserve Bank of New York.

    Cited by:

    1. Darrell Duffie & Michael Fleming & Frank Keane & Claire Nelson & Or Shachar & Peter Van Tassel, 2023. "Dealer capacity and US Treasury market functionality," BIS Working Papers 1138, Bank for International Settlements.
    2. Wycliffe Oluoch & Kalu Ojah, 2024. "Financial Market Development and the Microstructure of Corporate Bond Markets in Africa: A Survey," The African Finance Journal, Africagrowth Institute, vol. 26(1), pages 1-33.
    3. Lieven Baele & Geert Bekaert & Koen Inghelbrecht & Min Wei, 2020. "Flights to Safety," The Review of Financial Studies, Society for Financial Studies, vol. 33(2), pages 689-746.
    4. Broto, Carmen & Lamas, Matías, 2020. "Is market liquidity less resilient after the financial crisis? Evidence for US Treasuries," Economic Modelling, Elsevier, vol. 93(C), pages 217-229.
    5. Han, Seung-Oh & Huh, Sahn-Wook & Park, Jeayoung, 2023. "Detecting jumps amidst prevalent zero returns: Evidence from the U.S. Treasury securities," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 276-307.
    6. Lin, Hai & Lo, Ingrid & Qiao, Rui, 2021. "Macroeconomic news announcements and market efficiency: Evidence from the U.S. Treasury market," Journal of Banking & Finance, Elsevier, vol. 133(C).
    7. Geromichalos, Athanasios & Herrenbrueck, Lucas M. & Salyer, Kevin D., 2016. "A search-theoretic model of the term premium," Theoretical Economics, Econometric Society, vol. 11(3), September.
    8. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    9. Carol Alexander & Daniel F. Heck & Andreas Kaeck, 2022. "The Role of Binance in Bitcoin Volatility Transmission," Applied Mathematical Finance, Taylor & Francis Journals, vol. 29(1), pages 1-32, January.
    10. Benos, Evangelos & Žikeš, Filip, 2018. "Funding constraints and liquidity in two-tiered OTC markets," Journal of Financial Markets, Elsevier, vol. 39(C), pages 24-43.
    11. Markus Engler & Vahidin Jeleskovic, 2016. "Intraday volatility, trading volume and trading intensity in the interbank market e-MID," MAGKS Papers on Economics 201648, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    12. Kinkyo, Takuji, 2020. "Volatility interdependence on foreign exchange markets: The contribution of cross-rates," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    13. Ben Omrane, Walid & Tao, Yusi & Welch, Robert, 2017. "Scheduled macro-news effects on a Euro/US dollar limit order book around the 2008 financial crisis," Research in International Business and Finance, Elsevier, vol. 42(C), pages 9-30.
    14. Stefania D’Amico & N Aaron Pancost, 2022. "Special Repo Rates and the Cross-Section of Bond Prices: The Role of the Special Collateral Risk Premium [Pr icing the term structure with linear regressions]," Review of Finance, European Finance Association, vol. 26(1), pages 117-162.
    15. Schneider, Michael & Lillo, Fabrizio & Pelizzon, Loriana, 2016. "How has sovereign bond market liquidity changed? An illiquidity spillover analysis," SAFE Working Paper Series 151, Leibniz Institute for Financial Research SAFE.
    16. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2021. "Market and Liquidity Risks Using Transaction-by-Transaction Information," Mathematics, MDPI, vol. 9(14), pages 1-14, July.
    17. Siikanen, Milla & Kanniainen, Juho & Valli, Jaakko, 2017. "Limit order books and liquidity around scheduled and non-scheduled announcements: Empirical evidence from NASDAQ Nordic," Finance Research Letters, Elsevier, vol. 21(C), pages 264-271.
    18. Song, Zhaogang & Zhu, Haoxiang, 2018. "Quantitative easing auctions of Treasury bonds," Journal of Financial Economics, Elsevier, vol. 128(1), pages 103-124.
    19. Andrew C. Meldrum & Oleg Sokolinskiy, 2023. "The Effects of Volatility on Liquidity in the Treasury Market," Finance and Economics Discussion Series 2023-028, Board of Governors of the Federal Reserve System (U.S.).
    20. R. Krishnan & Vinod Mishra, 2012. "Intraday Liquidity Patterns in Indian Stock Market," Monash Economics Working Papers 34-12, Monash University, Department of Economics.

  5. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2012. "Forecasting through the rear-view mirror: data revisions and bond return predictability," Staff Reports 581, Federal Reserve Bank of New York.

    Cited by:

    1. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    2. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    3. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    4. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    5. Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
    6. Robert J. Hodrick & Tuomas Tomunen, 2018. "Taking the Cochrane-Piazzesi Term Structure Model Out of Sample: More Data, Additional Currencies, and FX Implications," NBER Working Papers 25092, National Bureau of Economic Research, Inc.
    7. Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
    8. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
    9. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
    10. Beber, Alessandro & Brandt, Michael & Luisi, Maurizio, 2013. "Eurozone Sovereign Yield Spreads and Diverging Economic Fundamentals," CEPR Discussion Papers 9538, C.E.P.R. Discussion Papers.
    11. Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
    12. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    13. Beber, Alessandro & Brandt, Michael & Luisi, Maurizio, 2013. "Distilling the Macroeconomic News Flow," CEPR Discussion Papers 9360, C.E.P.R. Discussion Papers.
    14. Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
    15. Geert Bekaert & Eric Engstrom & Andrey Ermolov, 2017. "Macro Risks and the Term Structure of Interest Rates," Finance and Economics Discussion Series 2017-058, Board of Governors of the Federal Reserve System (U.S.).
    16. Leo Krippner & Michelle Lewis, 2018. "Real-time forecasting with macro-finance models in the presence of a zero lower bound," Reserve Bank of New Zealand Discussion Paper Series DP2018/04, Reserve Bank of New Zealand.
    17. Oguzhan Cepni & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2019. "Time-Varying Risk Aversion and the Predictability of Bond Premia," Working Papers 201906, University of Pretoria, Department of Economics.
    18. Alessi, Lucia & Balduzzi, Pierluigi & Savona, Roberto, 2019. "Anatomy of a Sovereign Debt Crisis: CDS Spreads and Real-Time Macroeconomic Data," JRC Working Papers in Economics and Finance 2019-03, Joint Research Centre, European Commission.
    19. Maghyereh, Aktham & Ziadat, Salem Adel & Al Rababa'a, Abdel Razzaq A., 2024. "Exploring the dynamic connections between oil price shocks and bond yields in developed nations: A TVP-SVAR-SV approach," Energy, Elsevier, vol. 306(C).
    20. Oğuzhan Çepni & Rangan Gupta & Mark E. Wohar, 2021. "Variants of consumption‐wealth ratios and predictability of U.S. government bond risk premia," International Review of Finance, International Review of Finance Ltd., vol. 21(2), pages 661-674, June.
    21. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    22. Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
    23. Andrea Berardi & Michael Markovich & Alberto Plazzi & Andrea Tamoni, 2019. "Mind the (Convergence) Gap: Bond Predictability Strikes Back!," Swiss Finance Institute Research Paper Series 19-52, Swiss Finance Institute.
    24. Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
    25. Oguzhan Cepni & Rangan Gupta & I. Ethem Guney & M. Hasan Yilmaz, 2019. "Forecasting Local Currency Bond Risk Premia of Emerging Markets: The Role of Cross-Country Macro-Financial Linkages," Working Papers 201957, University of Pretoria, Department of Economics.
    26. Bouri, Elie & Demirer, Riza & Gupta, Rangan & Wohar, Mark E., 2021. "Gold, platinum and the predictability of bond risk premia," Finance Research Letters, Elsevier, vol. 38(C).
    27. Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
    28. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    29. Balcilar, Mehmet & Gupta, Rangan & Wang, Shixuan & Wohar, Mark E., 2020. "Oil price uncertainty and movements in the US government bond risk premia," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    30. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
    31. Beber, Alessandro & Brandt, Michael & Luisi, Maurizio, 2013. "Economic Cycles and Expected Stock Returns," CEPR Discussion Papers 9528, C.E.P.R. Discussion Papers.
    32. Louis R. Piccotti, 2022. "Portfolio returns and consumption growth covariation in the frequency domain, real economic activity, and expected returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(3), pages 513-549, September.
    33. Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
    34. Oguzhan Cepni & Rangan Gupta & Mark E. Wohar, 2019. "Variants of Consumption-Wealth Ratios and Predictability of U.S. Government Bond Risk Premia: Old is still Gold," Working Papers 201912, University of Pretoria, Department of Economics.
    35. Nazemi, Abdolreza & Fabozzi, Frank J., 2024. "Interpretable machine learning for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 164(C).
    36. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    37. Strohsal, Till & Wolf, Elias, 2019. "Data revisions to German national accounts: Are initial releases good nowcasts?," Discussion Papers 2019/11, Free University Berlin, School of Business & Economics.
    38. Xiaosai Liao & Xinjue Li & Qingliang Fan, 2024. "Robust Bond Risk Premia Predictability Test in the Quantiles," Papers 2410.03557, arXiv.org.
    39. Christos Ioannidis & Kook Ka, 2021. "Economic Policy Uncertainty and Bond Risk Premia," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1479-1522, September.

  6. Olivier Armantier & Eric Ghysels & Asani Sarkar & Jeffrey Shrader, 2011. "Discount window stigma during the 2007-2008 financial crisis," Staff Reports 483, Federal Reserve Bank of New York.

    Cited by:

    1. Claudia Buch & Catherine Koch & Michael Koetter, 2016. "Crises and rescues: liquidity transmission through international banks," BIS Working Papers 576, Bank for International Settlements.
    2. Andrea Attar & Thomas Mariotti & François Salanié, 2022. "Regulating Insurance Markets: Multiple Contracting and Adverse Selection," Post-Print hal-03796415, HAL.
    3. Andrea Gurgone & Giulia Iori, 2022. "Macroprudential capital buffers in heterogeneous banking networks: insights from an ABM with liquidity crises," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1399-1445, October.
    4. Scott Brave & Hesna Genay, 2011. "Federal Reserve policies and financial market conditions during the crisis," Working Paper Series WP-2011-04, Federal Reserve Bank of Chicago.
    5. Crosignani, Matteo & Faria-e-Castro, Miguel & Fonseca, Luís, 2016. "The (unintended?) consequences of the largest liquidity injection ever," ESRB Working Paper Series 31, European Systemic Risk Board.
    6. Wang, Zijian, 2020. "Liquidity and private information in asset markets: To signal or not to signal," Journal of Economic Theory, Elsevier, vol. 190(C).
    7. Merrouche, Ouarda & Karam, Philippe & Turk, Rima & Souissi, Moez, 2014. "The Transmission of Liquidity Shocks: Evidence from Credit Rating Downgrades," CEPR Discussion Papers 10252, C.E.P.R. Discussion Papers.
    8. Chang, Su-Hsin & Contessi, Silvio & Francis, Johanna L., 2014. "Understanding the accumulation of bank and thrift reserves during the U.S. financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 43(C), pages 78-106.
    9. Céline Gauthier & Alfred Lehar & Héctor Pérez Saiz & Moez Souissi, 2015. "Emergency Liquidity Facilities, Signalling and Funding Costs," Staff Working Papers 15-44, Bank of Canada.
    10. Ken B. Cyree & Mark D. Griffiths & Drew B. Winters, 2017. "Implications of a TAF program stigma for lenders: the case of publicly traded banks versus privately held banks," Review of Quantitative Finance and Accounting, Springer, vol. 49(2), pages 545-567, August.
    11. He, Zhiguo & Huang, Jing & Zhou, Jidong, 2023. "Open banking: Credit market competition when borrowers own the data," Journal of Financial Economics, Elsevier, vol. 147(2), pages 449-474.
    12. Huberto M. Ennis & John A. Weinberg, 2010. "Over-the-counter loans, adverse selection, and stigma in the interbank market," Working Paper 10-07, Federal Reserve Bank of Richmond.
    13. Morten L. Bech & Todd Keister, 2013. "Liquidity regulation and the implementation of monetary policy," Departmental Working Papers 201325, Rutgers University, Department of Economics.
    14. Saki Bigio & Javier Bianchi, 2014. "Banks, Liquidity Management and Monetary Policy," 2014 Meeting Papers 489, Society for Economic Dynamics.
    15. Buch, Claudia M. & Goldberg, Linda, 2014. "International banking and liquidity risk transmission: Lessons from across countries," Discussion Papers 17/2014, Deutsche Bundesbank.
    16. V. Bignon & C. Jobst, 2017. "Economic Crises and the Eligibility for the Lender of Last Resort: Evidence from 19th century France," Working papers 618, Banque de France.
    17. Affinito, Massimiliano, 2013. "Central bank refinancing, interbank markets and the hypothesis of liquidity hoarding: evidence from a euro-area banking system," Working Paper Series 1607, European Central Bank.
    18. Pierre-Richard Agénor & Koray Alper & Luiz Pereira da Silva, 2015. "External Shocks, Financial Volatility and Reserve Requirements in an Open Economy," Working Papers Series 396, Central Bank of Brazil, Research Department.
    19. Michelle L. Barnes, 2014. "Let's talk about it: what policy tools should the Fed \\"normally\\" use?," Current Policy Perspectives 14-12, Federal Reserve Bank of Boston.
    20. Acharya, Viral & Kovner, Anna & Afonso, Gara, 2013. "How do Global Banks Scramble for Liquidity? Evidence from the Asset-Backed Commercial Paper Freeze of 2007," CEPR Discussion Papers 9457, C.E.P.R. Discussion Papers.
    21. Agénor, Pierre-Richard & Alper, Koray & Pereira da Silva, Luiz A., 2014. "Sudden floods, macroprudential regulation and stability in an open economy," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 68-100.
    22. Riedler, Jesper & Brueckbauer, Frank, 2017. "Evaluating regulation within an artificial financial system: A framework and its application to the liquidity coverage ratio regulation," ZEW Discussion Papers 17-022, ZEW - Leibniz Centre for European Economic Research.
    23. Rustom M. Irani & Ralf R. Meisenzahl, 2015. "Loan Sales and Bank Liquidity Risk Management: Evidence from a U.S. Credit Register," Finance and Economics Discussion Series 2015-1, Board of Governors of the Federal Reserve System (U.S.).
    24. Olivier Armantier & Adam Copeland, 2012. "Assessing the quality of “Furfine-based” algorithms," Staff Reports 575, Federal Reserve Bank of New York.
    25. La׳O, Jennifer, 2014. "Predatory trading, Stigma and the Fed׳s Term Auction Facility," Journal of Monetary Economics, Elsevier, vol. 65(C), pages 57-75.
    26. Attar, Andrea & Mariotti, Thomas & Salanié, François, 2014. "Multiple Contracting in Insurance Markets," TSE Working Papers 14-532, Toulouse School of Economics (TSE), revised Sep 2016.
    27. Adam Gersl & Zlatuse Komarkova & Lubos Komarek, 2016. "Liquidity Stress Testing with Second-Round Effects: Application to the Czech Banking Sector," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(1), pages 32-49, February.
    28. Zlatuse Komarkova & Adam Gersl & Lubos Komarek, 2011. "Models for Stress Testing Czech Banks' Liquidity Risk," Working Papers 2011/11, Czech National Bank.
    29. Clemens Jobst & Stefano Ugolini, 2016. "The Coevolution of Money Markets and Monetary Policy, 1815–2008," Post-Print hal-01357712, HAL.
    30. Fecht, Falko & Weber, Patrick, 2023. "Who borrows from the Eurosystem’s lender-of-the-last-resort facility?," Journal of Banking & Finance, Elsevier, vol. 150(C).
    31. Acharya, Viral & Merrouche, Ouarda, 2012. "Precautionary hoarding of liquidity and inter-bank markets: Evidence from the sub-prime crisis," CEPR Discussion Papers 8859, C.E.P.R. Discussion Papers.
    32. Michael Brei & Ramon Moreno, 2018. "Reserve requirements and capital flows in Latin America," BIS Working Papers 741, Bank for International Settlements.
    33. Cañón Salazar Carlos Iván, 2016. "Distributional Policy Effects with Many Treatment Outcomes," Working Papers 2016-01, Banco de México.
    34. Todd Keister, 2017. "The Interplay Between Liquidity Regulation, Monetary Policy Implementation and Financial Stability," World Scientific Book Chapters, in: Douglas D Evanoff & George G Kaufman & Agnese Leonello & Simone Manganelli (ed.), Achieving Financial Stability Challenges to Prudential Regulation, chapter 13, pages 173-193, World Scientific Publishing Co. Pte. Ltd..
    35. Mark A. Carlson & Marco Macchiavelli, 2018. "Emergency Collateral Upgrades," Finance and Economics Discussion Series 2018-078, Board of Governors of the Federal Reserve System (U.S.).
    36. Anna Cororaton & Samuel Rosen, 2021. "Public Firm Borrowers of the U.S. Paycheck Protection Program [The risk of being a fallen angel and the corporate dash for cash in the midst of COVID]," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 10(4), pages 641-693.
    37. Huberto M. Ennis, 2011. "Strategic behavior in the tri-party repo market," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 97(4Q), pages 389-413.
    38. Agénor, Pierre-Richard & Jia, Pengfei, 2020. "Capital controls and welfare with cross-border bank capital flows," Journal of Macroeconomics, Elsevier, vol. 65(C).
    39. Cyree, Ken B. & Griffiths, Mark D. & Winters, Drew B., 2013. "Federal Reserve financial crisis lending programs and bank stock returns," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3819-3829.
    40. Olivier Armantier & Charles Holt, 2024. "Can Discount Window Stigma Be Cured? An Experimental Investigation," Staff Reports 1103, Federal Reserve Bank of New York.
    41. Colignatus, Thomas, 2011. "Conditions for turning the ex ante risk premium into an ex post redemption for EU government debt," MPRA Paper 34816, University Library of Munich, Germany, revised 17 Nov 2011.
    42. Mark Carlson & Burcu Duygan-Bump & William Nelson, 2015. "Why do we need both liquidity regulations and a lender of last resort? A perspective from Federal Reserve lending during the 2007-09 US financial crisis," BIS Working Papers 493, Bank for International Settlements.
    43. Viral V. Acharya & Michael J. Fleming & Warren B. Hrung & Asani Sarkar, 2014. "Dealer financial conditions and lender-of-last resort facilities," Staff Reports 673, Federal Reserve Bank of New York.
    44. Allen, Kyle D. & Hein, Scott E. & Whitledge, Matthew D., 2017. "The evolution of the Federal Reserve’s Term Auction Facility and FDIC-insured bank utilization," Journal of Financial Stability, Elsevier, vol. 31(C), pages 154-166.
    45. Gande, Amar & Kalpathy, Swaminathan, 2017. "CEO compensation and risk-taking at financial firms: Evidence from U.S. federal loan assistance," Journal of Corporate Finance, Elsevier, vol. 47(C), pages 131-150.
    46. Andrieș, Alin Marius & Nistor, Simona & Ongena, Steven & Sprincean, Nicu, 2020. "On Becoming an O-SII (“Other Systemically Important Institution”)," Journal of Banking & Finance, Elsevier, vol. 111(C).
    47. James J. McAndrews & Asani Sarkar & Zhenyu Wang, 2008. "The effect of the Term Auction Facility on the London inter-bank offered rate," Staff Reports 335, Federal Reserve Bank of New York.
    48. Jakob Korbinian Eberl, 2016. "The Collateral Framework of the Eurosystem and Its Fiscal Implications," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 69.
    49. Yeon-Koo Che & Chongwoo Choe & Keeyoung Rhee, 2020. "Bailout Stigma," Papers 2006.05640, arXiv.org, revised Oct 2023.
    50. Gary Gorton & Ellis W. Tallman, 2016. "How Did Pre-Fed Banking Panics End?," NBER Working Papers 22036, National Bureau of Economic Research, Inc.
    51. Gary B. Gorton & Andrew Metrick, 2013. "The Federal Reserve and Financial Regulation: The First Hundred Years," NBER Working Papers 19292, National Bureau of Economic Research, Inc.
    52. Allen N. Berger & Martien Lamers & Raluca A. Roman & Koen Schoors, 2023. "Supply and Demand Effects of Bank Bailouts: Depositors Need Not Apply and Need Not Run," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(6), pages 1397-1442, September.
    53. Olivier Armantier & Marco Cipriani & Asani Sarkar, 2025. "Discount Window Stigma After the Global Financial Crisis," Liberty Street Economics 20250117, Federal Reserve Bank of New York.
    54. Roberto Robatto, 2015. "Financial Crises and Systemic Bank Runs in a Dynamic Model of Banking," 2015 Meeting Papers 483, Society for Economic Dynamics.
    55. Hoag, Christopher, 2018. "Clearinghouse loan certificates as a lender of last resort," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 215-229.
    56. Carlson, Mark & Macchiavelli, Marco, 2020. "Emergency loans and collateral upgrades: How broker-dealers used Federal Reserve credit during the 2008 financial crisis," Journal of Financial Economics, Elsevier, vol. 137(3), pages 701-722.
    57. Q. Farooq Akram & Jon H. Findreng & Lyndsie Smith, 2023. "The Norwegian overnight interbank market during the Covid pandemic," Working Paper 2023/8, Norges Bank.
    58. Felix P. Ackon & Huberto M. Ennis, 2018. "The Fed's Discount Window: An Overview of Recent Data," Working Paper 18-8, Federal Reserve Bank of Richmond.
    59. P. Andrade & C. Cahn & H. Fraisse & J-S. Mésonnier, 2015. "Can the Provision of Long-Term Liquidity Help to Avoid a Credit Crunch? Evidence from the Eurosystem's LTROs," Working papers 540, Banque de France.
    60. Weber, Patrick, 2015. "Does the Eurosystem's lender of last resort facility has a structurally di fferent option value across banks?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113123, Verein für Socialpolitik / German Economic Association.
    61. Brian Begalle & Antoine Martin & James J. McAndrews & Susan McLaughlin, 2013. "The risk of fire sales in the tri-party repo market," Staff Reports 616, Federal Reserve Bank of New York.
    62. Gary B. Gorton & Guillermo L. Ordoñez, 2014. "How Central Banks End Crises," PIER Working Paper Archive 14-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    63. Kick, Thomas & Koetter, Michael & Storz, Manuela, 2016. "Cross-border transmission of emergency liquidity," Discussion Papers 34/2016, Deutsche Bundesbank.
    64. Mr. Philippe D Karam & Ouarda Merrouche & Moez Souissi & Ms. Rima A Turk, 2014. "The Transmission of Liquidity Shocks: The Role of Internal Capital Markets and Bank Funding Strategies," IMF Working Papers 2014/207, International Monetary Fund.
    65. Ben S. Bernanke, 2018. "The Real Effects of Disrupted Credit: Evidence from the Global Financial Crisis," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 251-342.
    66. Brancati, Emanuele & Macchiavelli, Marco, 2019. "The information sensitivity of debt in good and bad times," Journal of Financial Economics, Elsevier, vol. 133(1), pages 99-112.
    67. Anne-Marie Rieu-Foucault, 2018. "Les interventions de crise de la FED et de la BCE diffèrent-elles ?," EconomiX Working Papers 2018-31, University of Paris Nanterre, EconomiX.
    68. John Friedland, 2016. "Directors at too big to fail institutions should be liable," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 13(3), pages 195-203, August.
    69. Gary Gorton, 2013. "The Development of Opacity in U.S. Banking," NBER Working Papers 19540, National Bureau of Economic Research, Inc.
    70. Bank for International Settlements, 2019. "Unconventional monetary policy tools: a cross-country analysis," CGFS Papers, Bank for International Settlements, number 63, October –.
    71. Jin, Ling & Li, Zhisheng & Lu, Lei & Ni, Xiaoran, 2023. "Does stock market rescue affect investment efficiency in the real sector?," Journal of Financial Markets, Elsevier, vol. 65(C).
    72. Edoardo Rainone, 2021. "Identifying deposits' outflows in real-time," Temi di discussione (Economic working papers) 1319, Bank of Italy, Economic Research and International Relations Area.
    73. Christopher S. Sutherland, 2017. "What Explains Month-End Funding Pressure in Canada?," Discussion Papers 17-9, Bank of Canada.
    74. Zhang, Hanzhe & Hu, Yunzhi, 2020. "Overcoming Borrowing Stigma: The Design of Lending-of-Last-Resort Policies," Working Papers 2020-5, Michigan State University, Department of Economics.
    75. Abbassi, Puriya & Fecht, Falko & Weber, Patrick, 2013. "How stressed are banks in the interbank market?," Discussion Papers 40/2013, Deutsche Bundesbank.
    76. Anbil, Sriya & Carlson, Mark & Styczynski, Mary-Frances, 2023. "The effect of the Federal Reserve’s lending facility on PPP lending by commercial banks," Journal of Financial Intermediation, Elsevier, vol. 55(C).
    77. Kim, Hugh Hoikwang, 2020. "Information spillover of bailouts," Journal of Financial Intermediation, Elsevier, vol. 43(C).
    78. Anbil, Sriya, 2018. "Managing stigma during a financial crisis," Journal of Financial Economics, Elsevier, vol. 130(1), pages 166-181.
    79. Berger, Allen N. & Black, Lamont K. & Bouwman, Christa H.S. & Dlugosz, Jennifer, 2017. "Bank loan supply responses to Federal Reserve emergency liquidity facilities," Journal of Financial Intermediation, Elsevier, vol. 32(C), pages 1-15.
    80. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    81. Stefano Puddu & Andreas Waelchli, 2011. "Too TAF Towards the Risk," IRENE Working Papers 11-01, IRENE Institute of Economic Research.
    82. Stefano Puddu & Andreas Waelchli, 2015. "TAF Effect on Liquidity Risk Exposure," IRENE Working Papers 15-07, IRENE Institute of Economic Research.

  7. Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.

    Cited by:

    1. Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
    2. Morita, Hiroshi & 森田, 裕史, 2019. "Forecasting Public Investment Using Daily Stock Returns," Discussion paper series HIAS-E-88, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    3. Pitschner, Stefan, 2013. "Using Financial Markets To Estimate the Macro Effects of Monetary Policy:," Working Paper Series 267, Sveriges Riksbank (Central Bank of Sweden).
    4. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    5. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    6. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    7. Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.

  8. Benjamin Chabot & Eric Ghysels & Ravi Jagannathan, 2009. "Momentum Cycles and Limits to Arbitrage Evidence from Victorian England and Post-Depression US Stock Markets," NBER Working Papers 15591, National Bureau of Economic Research, Inc.

    Cited by:

    1. Menkhoff, Lukas & Sarno, Lucio & Schmeling, Maik & Schrimpf, Andreas, 2012. "Currency momentum strategies," Journal of Financial Economics, Elsevier, vol. 106(3), pages 660-684.
    2. Daniel, Kent & Moskowitz, Tobias J., 2016. "Momentum crashes," Journal of Financial Economics, Elsevier, vol. 122(2), pages 221-247.
    3. Dobrynskaya, Victoria, 2019. "Avoiding momentum crashes: Dynamic momentum and contrarian trading," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    4. Benjamin Chabot & Eric Ghysels & Ravi Jagannathan, 2014. "Momentum Trading, Return Chasing and Predictable Crashes," Working Paper Series WP-2014-27, Federal Reserve Bank of Chicago.
    5. Gao, Ya & Guo, Bin & Xiong, Xiong, 2021. "Signed momentum in the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    6. William Goetzmann & Simon Huang, 2015. "Momentum in Imperial Russia," NBER Working Papers 21700, National Bureau of Economic Research, Inc.
    7. Blanco, Ivan & De Jesus, Miguel & Remesal, Alvaro, 2023. "Overlapping momentum portfolios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 1-22.
    8. Victoria Dobrynskaya, 2017. "Dynamic Momentum and Contrarian Trading," HSE Working papers WP BRP 61/FE/2017, National Research University Higher School of Economics.
    9. Kent Daniel & Ravi Jagannathan & Soohun Kim, 2012. "Tail Risk in Momentum Strategy Returns," NBER Working Papers 18169, National Bureau of Economic Research, Inc.

  9. Benjamin Chabot & Eric Ghysels & Ravi Jagannathan, 2008. "Price Momentum In Stocks: Insights From Victorian Age Data," NBER Working Papers 14500, National Bureau of Economic Research, Inc.

    Cited by:

    1. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    2. Zaremba, Adam & Long, Huaigang & Karathanasopoulos, Andreas, 2019. "Short-term momentum (almost) everywhere," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    3. Zaremba, Adam & Shemer, Jacob, 2018. "Is there momentum in factor premia? Evidence from international equity markets," Research in International Business and Finance, Elsevier, vol. 46(C), pages 120-130.
    4. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, April.
    5. Zaremba, Adam & Bianchi, Robert J. & Mikutowski, Mateusz, 2021. "Long-run reversal in commodity returns: Insights from seven centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 133(C).
    6. Renata Guobužaitė & Deimantė Teresienė, 2021. "Can Economic Factors Improve Momentum Trading Strategies? The Case of Managed Futures during the COVID-19 Pandemic," Economies, MDPI, vol. 9(2), pages 1-16, May.
    7. Zaremba, Adam & Kizys, Renatas & Raza, Muhammad Wajid, 2020. "The long-run reversal in the long run: Insights from two centuries of international equity returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 177-199.
    8. Zaremba, Adam & Cakici, Nusret & Bianchi, Robert J. & Long, Huaigang, 2023. "Interest rate changes and the cross-section of global equity returns," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    9. Chan, Raymond H. & Clark, Ephraim & Wong, Wing-Keung, 2016. "On the Third Order Stochastic Dominance for Risk-Averse and Risk-Seeking Investors with Analysis of their Traditional and Internet Stocks," MPRA Paper 75002, University Library of Munich, Germany.
    10. Sina Badreddine & Ephraim Clark, 2021. "The asymmetric effects of industry specific volatility in momentum returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6444-6458, October.
    11. Zaremba, Adam, 2017. "Performance persistence of government bond factor premia," Finance Research Letters, Elsevier, vol. 22(C), pages 182-189.

  10. Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).

    Cited by:

    1. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    2. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    3. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    4. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
    5. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    6. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    7. Charles Engel & John H. Rogers, 2008. "Expected consumption growth from cross-country surveys: implications for assessing international capital markets," International Finance Discussion Papers 949, Board of Governors of the Federal Reserve System (U.S.).
    8. Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
    9. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    10. Andrade, P. & Fourel, V. & Ghysels, E. & Idier, I., 2013. "The financial content of inflation risks in the euro area," Working papers 437, Banque de France.
    11. Chava, Sudheer & Gallmeyer, Michael & Park, Heungju, 2015. "Credit conditions and stock return predictability," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 117-132.
    12. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    13. Talha Omer & Kristofer Månsson & Pär Sjölander & B. M. Golam Kibria, 2024. "Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates," Statistical Papers, Springer, vol. 65(5), pages 3303-3325, July.
    14. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    15. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    16. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    17. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
    18. Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
    19. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    20. Allan W. Gregory & Hui Zhu, 2014. "Testing the value of lead information in forecasting monthly changes in employment from the Bureau of Labor Statistics," Applied Financial Economics, Taylor & Francis Journals, vol. 24(7), pages 505-514, April.
    21. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    22. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    23. Anindya Biswas, 2015. "The output gap and inflation in U.S. data: an empirical note," Economics Bulletin, AccessEcon, vol. 35(2), pages 841-845.
    24. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    25. Constantin Rudolf Salomo Bürgi, 2023. "How to deal with missing observations in surveys of professional forecasters," Journal of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 2185975-218, December.
    26. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    27. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    28. Pitschner, Stefan, 2013. "Using Financial Markets To Estimate the Macro Effects of Monetary Policy:," Working Paper Series 267, Sveriges Riksbank (Central Bank of Sweden).
    29. Geoff Kenny & Thomas Kostka & Federico Masera, 2014. "How Informative are the Subjective Density Forecasts of Macroeconomists?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 163-185, April.
    30. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
    31. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    32. Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
    33. Chernov, Mikhail & Mueller, Philippe, 2012. "The term structure of inflation expectations," Journal of Financial Economics, Elsevier, vol. 106(2), pages 367-394.
    34. Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
    35. Didier Nibbering & Richard Paap & Michel van der Wel, 2015. "What Do Professional Forecasters Actually Predict?," Tinbergen Institute Discussion Papers 15-095/III, Tinbergen Institute, revised 13 Oct 2017.
    36. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    37. Kanas, Angelos & Molyneux, Philip, 2020. "Do measures of systemic risk predict U.S. corporate bond default rates?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    38. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    39. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    40. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    41. Boumans, Dorine & Garnitz, Johanna, 2017. "Ifo World Economic Survey Database - An International Economic Expert Survey," Munich Reprints in Economics 55041, University of Munich, Department of Economics.
    42. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    43. Ilek, Alex, 2021. "Are monetary surprises effective? The view of professional forecasters in Israel," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 516-530.
    44. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    45. Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021. "Commodity prices and global economic activity: A derived-demand approach," Energy Economics, Elsevier, vol. 96(C).
    46. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    47. Caruso, Alberto, 2019. "Macroeconomic news and market reaction: Surprise indexes meet nowcasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1725-1734.
    48. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    49. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    50. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    51. Yimin Yang & Fei Jia & Haoran Li, 2023. "Estimation of Panel Data Models with Mixed Sampling Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 514-544, June.
    52. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
    53. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
    54. Juneja, Januj A., 2016. "Financial crises and estimation bias in international bond markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 593-607.
    55. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla & Masih, A. Mansur M., 2014. "Combining Momentum, Value, and Quality for the Islamic Equity Portfolio: Multi-style Rotation Strategies using Augmented Black Litterman Factor Model," MPRA Paper 56965, University Library of Munich, Germany.
    56. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    57. Michael P. Clements & Ana Beatriz Galvão, 2014. "Measuring Macroeconomic Uncertainty: US Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-04, Henley Business School, University of Reading.
    58. Mokinski, Frieder, 2016. "Using time-stamped survey responses to measure expectations at a daily frequency," International Journal of Forecasting, Elsevier, vol. 32(2), pages 271-282.
    59. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    60. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    61. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    62. Travis J. Berge, 2017. "Understanding Survey Based Inflation Expectations," Finance and Economics Discussion Series 2017-046, Board of Governors of the Federal Reserve System (U.S.).
    63. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    64. Anderson, Evan W. & Ghysels, Eric & Juergens, Jennifer L., 2009. "The impact of risk and uncertainty on expected returns," Journal of Financial Economics, Elsevier, vol. 94(2), pages 233-263, November.
    65. Cláudia Duarte, 2016. "A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data," Working Papers w201601, Banco de Portugal, Economics and Research Department.
    66. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    67. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    68. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
    69. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
    70. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    71. Emmanuel Mamatzakis & Mike G. Tsionas & Steven Ongena, 2023. "Why do households repay their debt in UK during the COVID-19 crisis?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(8), pages 1789-1823, April.
    72. Anindya Biswas, 2014. "The output gap and expected security returns," Review of Financial Economics, John Wiley & Sons, vol. 23(3), pages 131-140, September.
    73. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    74. Yu, Honghai & Fang, Libing & Du, Donglei & Yan, Panpan, 2017. "How EPU drives long-term industry beta," Finance Research Letters, Elsevier, vol. 22(C), pages 249-258.
    75. Sorin Daniliuc & Chris Bilson & Greg Shailer, 2014. "The Interaction of Post-Acquisition Integration and Acquisition Focus in Relation to Long-Run Performance," International Review of Finance, International Review of Finance Ltd., vol. 14(4), pages 587-612, December.
    76. Monica Jain, 2018. "Sluggish Forecasts," Staff Working Papers 18-39, Bank of Canada.
    77. Hanoma, Ahmed & Nautz, Dieter, 2018. "The information content of inflation swap rates for the long-term inflation expectations of professionals: Evidence from a MIDAS analysis," Discussion Papers 2018/16, Free University Berlin, School of Business & Economics.
    78. P. Schanbacher, 2014. "Measuring and adjusting for overconfidence," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 423-452, October.
    79. Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.

  11. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.

    Cited by:

    1. Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
    2. Volker Seiler, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," Post-Print hal-04549980, HAL.
    3. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    4. Etienne, Xiaoli, 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices," 2015 Conference, August 9-14, 2015, Milan, Italy 211626, International Association of Agricultural Economists.
    5. Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
    6. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    7. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    8. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    9. Adam Clements & Yin Liao, 2014. "The role in index jumps and cojumps in forecasting stock index volatility: Evidence from the Dow Jones index," NCER Working Paper Series 101, National Centre for Econometric Research.
    10. Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
    11. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    12. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    13. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    14. Aharon, David Y. & Qadan, Mahmoud, 2020. "When do retail investors pay attention to their trading platforms?," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    15. Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
    16. González, Mariano & Nave, Juan & Rubio, Gonzalo, 2018. "Macroeconomic determinants of stock market betas," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 26-44.
    17. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    18. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
    20. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    21. Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.
    22. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    23. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    24. Gu, Qinen & Li, Shaofang & Tian, Sihua & Wang, Yuyouting, 2023. "Climate, geopolitical, and energy market risk interconnectedness: Evidence from a new climate risk index," Finance Research Letters, Elsevier, vol. 58(PB).
    25. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    26. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2006. "On the Sensitivity of Firms' Investment to Cash Flow and Uncertainty," Boston College Working Papers in Economics 638, Boston College Department of Economics, revised 26 Apr 2008.
    27. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    28. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    29. Babii, Andrii & Florens, Jean-Pierre, 2020. "Is completeness necessary? Estimation in nonidentified linear models," TSE Working Papers 20-1091, Toulouse School of Economics (TSE).
    30. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    31. Huiling Yuan & Kexin Lu & Guodong Li & Junhui Wang, 2024. "High‐Frequency‐Based Volatility Model with Network Structure," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 533-557, July.
    32. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
    33. Tsiakas, Ilias & Zhang, Haibin, 2021. "Economic fundamentals and the long-run correlation between exchange rates and commodities," Global Finance Journal, Elsevier, vol. 49(C).
    34. Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
    35. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    36. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
    37. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    38. Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
    39. González-Sánchez, Mariano & Nave, Juan & Rubio, Gonzalo, 2020. "Effects of uncertainty and risk aversion on the exposure of investment-style factor returns to real activity," Research in International Business and Finance, Elsevier, vol. 53(C).
    40. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    41. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    42. Nikolaus Hautsch & Fuyu Yang, 2014. "Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth," University of East Anglia Applied and Financial Economics Working Paper Series 056, School of Economics, University of East Anglia, Norwich, UK..
    43. Layna Mosley & Victoria Paniagua & Erik Wibbels, 2020. "Moving markets? Government bond investors and microeconomic policy changes," Economics and Politics, Wiley Blackwell, vol. 32(2), pages 197-249, July.
    44. Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
    45. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    46. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    47. Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
    48. Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
    49. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    50. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
    51. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2020. "Testing a large set of zero restrictions in regression models, with an application to mixed frequency Granger causality," Journal of Econometrics, Elsevier, vol. 218(2), pages 633-654.
    52. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    53. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    54. Shuichi Nagata, 2012. "Consistent Estimation of Integrated Volatility Using Intraday Absolute Returns for SV Jump Diffusion Processes," Economics Bulletin, AccessEcon, vol. 32(1), pages 306-314.
    55. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    56. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    57. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    58. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    59. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    60. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    61. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    62. Talha Omer & Kristofer Månsson & Pär Sjölander & B. M. Golam Kibria, 2024. "Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates," Statistical Papers, Springer, vol. 65(5), pages 3303-3325, July.
    63. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    64. Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
    65. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
    66. Ryan T. Ball & Lindsey Gallo & Eric Ghysels, 2019. "Tilting the evidence: the role of firm-level earnings attributes in the relation between aggregated earnings and gross domestic product," Review of Accounting Studies, Springer, vol. 24(2), pages 570-592, June.
    67. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," MPRA Paper 93802, University Library of Munich, Germany.
    68. Henryk Gurgul & Roland Mestel & Robert Syrek, 2017. "MIDAS models in banking sector – systemic risk comparison," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 18(2), pages 165-181.
    69. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    70. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    71. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    72. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R., 2014. "Risk–return trade-off in the pacific basin equity markets," Emerging Markets Review, Elsevier, vol. 18(C), pages 123-140.
    73. Sarah Goldman & Virginia Zhelyazkova, 2023. "CO2 Emissions and GDP: A Revisited Kuznets Curve Version via a Panel Threshold MIDAS-VAR Model in Europe for a Recent Period," Economic Research Guardian, Mutascu Publishing, vol. 13(2), pages 82-99, December.
    74. Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    75. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
    76. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    77. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
    78. Alain Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Mico Loretan, 2008. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," BIS Working Papers 249, Bank for International Settlements.
    79. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    80. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    81. Ghysels, Eric & Sinko, Arthur, 2011. "Volatility forecasting and microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 257-271, January.
    82. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
    83. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    84. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    85. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    86. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    87. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    88. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    89. Andrew J. Patton & Tarun Ramadorai, 2013. "On the High-Frequency Dynamics of Hedge Fund Risk Exposures," Journal of Finance, American Finance Association, vol. 68(2), pages 597-635, April.
    90. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
    91. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    92. Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
    93. Wing Hong Chan & Ranjini Jha & Madhu Kalimipalli, 2009. "The Economic Value Of Using Realized Volatility In Forecasting Future Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 231-259, September.
    94. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    95. El-Shagi, Makram, 2016. "Much ado about nothing: Sovereign ratings and government bond yields in the OECD," IWH Discussion Papers 22/2016, Halle Institute for Economic Research (IWH).
    96. Ekaterina Smetanina, 2017. "Real-Time GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 561-601.
    97. Jad Beyhum & Jonas Striaukas, 2023. "Factor-augmented sparse MIDAS regressions with an application to nowcasting," Papers 2306.13362, arXiv.org, revised Nov 2024.
    98. Guillaume Bagnarosa & Mark Cummins & Michael Dowling & Fearghal Kearney, 2022. "Commodity risk in European dairy firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 151-181.
    99. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
    100. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    101. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    102. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    103. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    104. Ghysels, Eric & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Regime switches in the risk–return trade-off," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 118-138.
    105. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    106. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    107. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
    108. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    109. Fang, Libing & Yu, Honghai & Huang, Yingbo, 2018. "The role of investor sentiment in the long-term correlation between U.S. stock and bond markets," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 127-139.
    110. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    111. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    112. Sakemoto, Ryuta, 2023. "The long-run risk premium in the intertemporal CAPM: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    113. Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
    114. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    115. Philip Hans Franses, 2019. "On inflation expectations in the NKPC model," Empirical Economics, Springer, vol. 57(6), pages 1853-1864, December.
    116. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    117. Feifei Huang & Mingxia Lin & Shoukat Iqbal Khattak, 2024. "Form Uncertainty to Sustainable Decision-Making: A Novel MIDAS–AM–DeepAR-Based Prediction Model for E-Commerce Industry Development," Sustainability, MDPI, vol. 16(14), pages 1-24, July.
    118. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andre Lucas, 2011. "Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," Tinbergen Institute Discussion Papers 11-042/2/DSF16, Tinbergen Institute.
    119. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    120. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    121. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
    122. Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
    123. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    124. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    125. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    126. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
    127. Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
    128. Maojun Zhang & Yang Zhao & Jiangxia Nan, 2022. "Economic policy uncertainty and volatility of treasury futures," Review of Derivatives Research, Springer, vol. 25(1), pages 93-107, April.
    129. León Valle Ángel & Nave Pineda Juan & Rubio Irigoyen Gonzalo, 2005. "The Relationship between Risk and Expected Return in Europe," Working Papers 201025, Fundacion BBVA / BBVA Foundation.
    130. Correa, Alexander, 2021. "Prediciendo la llegada de turistas a Colombia a partir de los criterios de Google Trends," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue No. 95, pages 105-134, July.
    131. Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
    132. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    133. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    134. H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
    135. Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
    136. Lu, Xinjie & Zeng, Qing & Zhong, Juandan & Zhu, Bo, 2024. "International stock market volatility: A global tail risk sight," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    137. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019. "Another look at the energy-growth nexus: New insights from MIDAS regressions," Energy, Elsevier, vol. 174(C), pages 69-84.
    138. Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
    139. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
    140. Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2015. "Fundamentals and the Volatility of Real Estate Prices in China: A Sequential Modelling Strategy," Working Papers 222015, Hong Kong Institute for Monetary Research.
    141. Deng, Yongheng & Girardin, Eric & Joyeux, Roselyne, 2018. "Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy," China Economic Review, Elsevier, vol. 48(C), pages 205-222.
    142. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    143. Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
    144. Liu, Xinyi & Margaritis, Dimitris & Wang, Peiming, 2012. "Stock market volatility and equity returns: Evidence from a two-state Markov-switching model with regressors," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 483-496.
    145. Valadkhani, Abbas & Smyth, Russell, 2018. "Asymmetric responses in the timing, and magnitude, of changes in Australian monthly petrol prices to daily oil price changes," Energy Economics, Elsevier, vol. 69(C), pages 89-100.
    146. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    147. Ramazan Gencay & Nikola Gradojevic & Faruk Selcuk & Brandon Whitcher, 2010. "Asymmetry of information flow between volatilities across time scales," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 895-915.
    148. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    149. Visser, Marcel P., 2008. "Garch Parameter Estimation Using High-Frequency Data," MPRA Paper 9076, University Library of Munich, Germany.
    150. Ooft, Gavin & Bhaghoe, Sailesh & Hans Franses, Philip, 2021. "Forecasting annual inflation in Suriname," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    151. Hautsch, Nikolaus & Kyj, Lada. M. & Malec, Peter, 2013. "Do high-frequency data improve high-dimensional portfolio allocations?," SFB 649 Discussion Papers 2013-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    152. Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
    153. Ayinde, Taofeek O. & Olaniran, Abeeb O. & Abolade, Onomeabure C. & Ogbonna, Ahamuefula Ephraim, 2023. "Technology shocks - Gold market connection: Is the effect episodic to business cycle behaviour?," Resources Policy, Elsevier, vol. 84(C).
    154. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    155. Aniket Bhanu, 2024. "The Effect of Anti‐Procyclical Central Counterparty Margins On Trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(9), pages 1474-1486, September.
    156. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    157. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    158. Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
    159. Anindya Biswas, 2015. "The output gap and inflation in U.S. data: an empirical note," Economics Bulletin, AccessEcon, vol. 35(2), pages 841-845.
    160. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    161. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    162. Huiling Yuan & Yong Zhou & Zhiyuan Zhang & Xiangyu Cui, 2019. "Forecasting security's volatility using low-frequency historical data, high-frequency historical data and option-implied volatility," Papers 1907.02666, arXiv.org.
    163. Lu, Xinjie & Ma, Feng & Li, Haibo & Wang, Jianqiong, 2023. "INE oil futures volatility prediction: Exchange rates or international oil futures volatility?," Energy Economics, Elsevier, vol. 126(C).
    164. Talavera, Oleksandr & Tsapin, Andriy & Zholud, Oleksandr, 2012. "Macroeconomic uncertainty and bank lending: The case of Ukraine," Economic Systems, Elsevier, vol. 36(2), pages 279-293.
    165. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    166. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    167. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    168. Huiling Yuan & Guodong Li & Junhui Wang, 2022. "High-Frequency-Based Volatility Model with Network Structure," Papers 2204.12933, arXiv.org.
    169. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    170. Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
    171. Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
    172. Ioannis Chatziantoniou, Stavros Degiannakis, George Filis, and Tim Lloyd, 2021. "Oil price volatility is effective in predicting food price volatility. Or is it?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    173. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    174. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    175. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    176. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
    177. Emiliano Magrini & Ayca Donmez, 2013. "Agricultural Commodity Price Volatility and Its Macroeconomic Determinants: A GARCH-MIDAS Approach," JRC Research Reports JRC84138, Joint Research Centre.
    178. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    179. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2016. "Which parametric model for conditional skewness?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1237-1271, October.
    180. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
    181. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    182. Qifa Xu & Zezhou Wang & Cuixia Jiang & Yezheng Liu, 2023. "Deep learning on mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2099-2120, December.
    183. Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna Rodríguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
    184. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
    185. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    186. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
    187. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    188. Eric Girardin & Roselyne Joyeux, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Post-Print hal-01499615, HAL.
    189. Alexander Correa, 2021. "Forecasting Tourist Arrivals to Colombia from Google Trends Search Criteria," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 95, pages 105-134, July-Dece.
    190. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    191. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    192. Elena Andreou & Andros Kourtellos, 2015. "The State and the Future of Cyprus Macroeconomic Forecasting," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 73-90, June.
    193. Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
    194. Jong-Min Kim & Hojin Jung & Li Qin, 2017. "A new generalized volatility proxy via the stochastic volatility model," Applied Economics, Taylor & Francis Journals, vol. 49(23), pages 2259-2268, May.
    195. Alexander Aue & Lajos Horváth & Clifford M. Hurvich & Philippe Soulier, 2014. "Limit Laws in Transaction-Level Asset Price Models," Post-Print hal-00583372, HAL.
    196. Ioannis Kasparis & Peter C.B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1700, Cowles Foundation for Research in Economics, Yale University.
    197. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    198. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    199. Kunst, Robert M. & Franses, Philip Hans, 2010. "Asymmetric Time Aggregation and its Potential Benefits for Forecasting Annual Data," Economics Series 252, Institute for Advanced Studies.
    200. Lee A. Smales, 2021. "The effect of treasury auctions on 10‐year Treasury note futures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1517-1555, April.
    201. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    202. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    203. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    204. Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
    205. Benoît Sévi, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Post-Print hal-01500860, HAL.
    206. Lucian-Liviu Albu & Radu Lupu & Adrian Cantemir Calin, 2015. "Interactions between financial markets and macroeconomic variables in EU: a nonlinear modeling approach," ERSA conference papers ersa15p685, European Regional Science Association.
    207. Ghysels, Eric & Ball, Ryan, 2017. "Automated Earnings Forecasts:- Beat Analysts or Combine and Conquer?," CEPR Discussion Papers 12179, C.E.P.R. Discussion Papers.
    208. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    209. Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
    210. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    211. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application," Papers 2008.03600, arXiv.org, revised Nov 2021.
    212. Alessandra Amendola & Vincenzo Candila & Fabrizio Cipollini & Giampiero M. Gallo, 2020. "Doubly Multiplicative Error Models with Long- and Short-run Components," Papers 2006.03458, arXiv.org.
    213. Adam Clements & Annastiina Silvennoinen, 2009. "On the economic benefit of utility based estimation of a volatility model," NCER Working Paper Series 44, National Centre for Econometric Research.
    214. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    215. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    216. Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
    217. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
    218. Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2018. "Mixed frequency models with MA components," Discussion Papers 02/2018, Deutsche Bundesbank.
    219. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," Centre for Growth and Business Cycle Research Discussion Paper Series 149, Economics, The University of Manchester.
    220. Polat, Onur & Demirer, Riza & Ekşi, İbrahim Halil, 2024. "What drives green betas? Climate uncertainty or speculation," Finance Research Letters, Elsevier, vol. 60(C).
    221. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    222. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    223. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
    224. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    225. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    226. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    227. Kerssenfischer, Mark & Schmeling, Maik, 2022. "What moves markets?," Discussion Papers 16/2022, Deutsche Bundesbank.
    228. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.
    229. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    230. Dossani, Asad, 2024. "Monetary policy and currency variance risk premia," Research in International Business and Finance, Elsevier, vol. 69(C).
    231. Afees A. Salisu & Raymond Swaray, 2020. "Forecasting the Return Volatility of Energy Prices: A GARCH-MIDAS Approach," World Scientific Book Chapters, in: Stéphane Goutte & Duc Khuong Nguyen (ed.), HANDBOOK OF ENERGY FINANCE Theories, Practices and Simulations, chapter 3, pages 47-71, World Scientific Publishing Co. Pte. Ltd..
    232. Belén Nieto & Alfonso Novales Cinca & Gonzalo Rubio, 2014. "Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns," Documentos de Trabajo del ICAE 2014-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    233. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    234. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    235. Smales, L.A., 2021. "Macroeconomic news and treasury futures return volatility: Do treasury auctions matter?," Global Finance Journal, Elsevier, vol. 48(C).
    236. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    237. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    238. Ralf Becker & Denise R. Osborn, 2012. "Weighted Smooth Transition Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 795-811, August.
    239. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    240. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    241. Qian, Hang, 2010. "Vector autoregression with varied frequency data," MPRA Paper 34682, University Library of Munich, Germany.
    242. Qian, Hang, 2016. "A computationally efficient method for vector autoregression with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 433-437.
    243. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    244. Tseng-Chan Tseng & Hung-Cheng Lai & Cha-Fei Lin, 2012. "The impact of overnight returns on realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 357-364, March.
    245. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    246. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Post-Print halshs-04344131, HAL.
    247. Christian T. Brownlees & Giampiero Gallo, 2007. "Volatility Forecasting Using Explanatory Variables and Focused Selection Criteria," Econometrics Working Papers Archive wp2007_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    248. Christian T. Brownlees & Giampiero M. Gallo, 2010. "Comparison of Volatility Measures: a Risk Management Perspective," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 29-56, Winter.
    249. Wink Junior, Marcos Vinício & Pereira, Pedro Luiz Valls, 2011. "Modeling and Forecasting of Realized Volatility: Evidence from Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
    250. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    251. Nobuyuki Hanaki & Cars Hommes & Dávid Kopányi & Anita Kopányi-Peuker & Jan Tuinstra, 2023. "Forecasting returns instead of prices exacerbates financial bubbles," Experimental Economics, Springer;Economic Science Association, vol. 26(5), pages 1185-1213, November.
    252. Diego J. Pedregal & Javier J. Pérez & Antonio Sánchez Fuentes, 2014. "A Tookit to strengthen Government," Hacienda Pública Española / Review of Public Economics, IEF, vol. 211(4), pages 117-146, December.
    253. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    254. Wang, Zijun & Khan, M. Moosa, 2017. "Market states and the risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 314-327.
    255. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    256. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    257. Teresa Leal & Diego Pedregal & Javier Pérez, 2011. "Short-term monitoring of the Spanish government balance," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(1), pages 97-119, March.
    258. Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
    259. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    260. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
    261. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
    262. Afees A. Salisu & Rangan Gupta, 2019. "How do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Working Papers 201946, University of Pretoria, Department of Economics.
    263. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    264. Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
    265. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    266. Hale, Galina & Lopez, Jose A., 2019. "Monitoring banking system connectedness with big data," Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
    267. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    268. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    269. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    270. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
    271. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    272. Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
    273. Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
    274. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    275. Yimin Yang & Fei Jia & Haoran Li, 2023. "Estimation of Panel Data Models with Mixed Sampling Frequencies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 514-544, June.
    276. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    277. Joe Hirschberg & Jenny Lye, 2021. "Estimating risk premiums for regulated firms when accounting for reference-day variation and high-order moments of return volatility," Environment Systems and Decisions, Springer, vol. 41(3), pages 455-467, September.
    278. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    279. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    280. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    281. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "The role of high frequency intra-daily data, daily range and implied volatility in multi-period Value-at-Risk forecasting," MPRA Paper 35252, University Library of Munich, Germany.
    282. Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
    283. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    284. Wang, Tianyi & Liang, Fang & Huang, Zhuo & Yan, Hong, 2022. "Do realized higher moments have information content? - VaR forecasting based on the realized GARCH-RSRK model," Economic Modelling, Elsevier, vol. 109(C).
    285. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
    286. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla & Masih, A. Mansur M., 2014. "Combining Momentum, Value, and Quality for the Islamic Equity Portfolio: Multi-style Rotation Strategies using Augmented Black Litterman Factor Model," MPRA Paper 56965, University Library of Munich, Germany.
    287. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    288. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    289. Francis X. Diebold & Kamil Yilmaz, 2008. "Macroeconomic Volatility and Stock Market Volatility, World-Wide," PIER Working Paper Archive 08-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    290. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    291. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
    292. Michael P. Clements & Ana Beatriz Galvão, 2014. "Measuring Macroeconomic Uncertainty: US Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-04, Henley Business School, University of Reading.
    293. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    294. Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
    295. Ralf Becker & Adam Clements, 2007. "Forecasting stock market volatility conditional on macroeconomic conditions," NCER Working Paper Series 18, National Centre for Econometric Research.
    296. Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
    297. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    298. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    299. Wenting Liu & Zhaozhong Gui & Guilin Jiang & Lihua Tang & Lichun Zhou & Wan Leng & Xulong Zhang & Yujiang Liu, 2023. "Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data," Papers 2309.16196, arXiv.org.
    300. Henker, Thomas & Husodo, Zaäfri A., 2010. "Noise and efficient variance in the Indonesia Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 18(2), pages 199-216, April.
    301. Härdle, Wolfgang Karl & Mungo, Julius, 2007. "Long memory persistence in the factor of Implied volatility dynamics," SFB 649 Discussion Papers 2007-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    302. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2013. "On the Benefits of Equicorrelation for Portfolio Allocation," NCER Working Paper Series 99, National Centre for Econometric Research.
    303. Pérez, Javier J. & Pedregal, Diego J., 2008. "Should quarterly government finance statistics be used for fiscal surveillane in Europe?," Working Paper Series 937, European Central Bank.
    304. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    305. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    306. Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
    307. Huang, Xiaozhou & Wang, Yubao & Song, Juan, 2023. "The Chinese oil futures volatility: Evidence from high-low estimator information," Finance Research Letters, Elsevier, vol. 56(C).
    308. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    309. Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
    310. Bonino-Gayoso, Nicolás & García-Hiernaux, Alfredo, 2019. "TF-MIDAS: a new mixed-frequency model to forecast macroeconomic variables," MPRA Paper 93366, University Library of Munich, Germany.
    311. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
    312. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    313. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2007. "Valuation in US Commercial Real Estate," European Financial Management, European Financial Management Association, vol. 13(3), pages 472-497, June.
    314. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    315. Baur, Dirk G. & Dimpfl, Thomas, 2016. "Googling gold and mining bad news," Resources Policy, Elsevier, vol. 50(C), pages 306-311.
    316. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    317. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
    318. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    319. Bhanu Pratap & Nalin Priyaranjan, 2023. "Macroeconomic effects of uncertainty: a Google trends-based analysis for India," Empirical Economics, Springer, vol. 65(4), pages 1599-1625, October.
    320. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    321. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.
    322. Alejandro Fernández Cerezo, 2023. "A supply-side GDP nowcasting model," Economic Bulletin, Banco de España, issue 2023/Q1.
    323. Khoo, Joye & Cheung, Adrian (Wai Kong), 2021. "Does geopolitical uncertainty affect corporate financing? Evidence from MIDAS regression," Global Finance Journal, Elsevier, vol. 47(C).
    324. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    325. Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
    326. Leon, Angel & Nave, Juan M. & Rubio, Gonzalo, 2007. "The relationship between risk and expected return in Europe," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 495-512, February.
    327. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    328. Anderson, Evan W. & Ghysels, Eric & Juergens, Jennifer L., 2009. "The impact of risk and uncertainty on expected returns," Journal of Financial Economics, Elsevier, vol. 94(2), pages 233-263, November.
    329. Pacifico, Antonio, 2020. "Bayesian Fuzzy Clustering with Robust Weighted Distance for Multiple ARIMA and Multivariate Time-Series," MPRA Paper 104379, University Library of Munich, Germany.
    330. Baele, Lieven & Londono, Juan M., 2013. "Understanding industry betas," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 30-51.
    331. Robin de Vilder & Marcel P. Visser, 2007. "Proxies for daily volatility," PSE Working Papers halshs-00588307, HAL.
    332. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    333. Damien Kunjal & Faeezah Peerbhai & Paul-Francois Muzindutsi, 2022. "Political, economic, and financial country risks and the volatility of the South African Exchange Traded Fund market: A GARCH-MIDAS approach," Risk Management, Palgrave Macmillan, vol. 24(3), pages 236-258, September.
    334. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
    335. J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
    336. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    337. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    338. Christoffersen, Peter & Mazzotta, Stefano, 2004. "The informational content of over-the-counter currency options," Working Paper Series 366, European Central Bank.
    339. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    340. Belcaid, Karim & El Ghini, Ahmed, 2019. "U.S., European, Chinese economic policy uncertainty and Moroccan stock market volatility," The Journal of Economic Asymmetries, Elsevier, vol. 20(C).
    341. Adam E Clements & Yin Liao, 2013. "Modeling and forecasting realized volatility: getting the most out of the jump component," NCER Working Paper Series 93, National Centre for Econometric Research.
    342. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    343. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
    344. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    345. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    346. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    347. Keiichi Goshima & Hiroshi Ishijima & Mototsugu Shintani & Hiroki Yamamoto, 2019. "Forecasting Japanese inflation with a news-based leading indicator of economic activities," CARF F-Series CARF-F-458, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    348. Virmantas Kvedaras & Alfredas Račkauskas, 2010. "Regression Models with Variables of Different Frequencies: The Case of a Fixed Frequency Ratio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 600-620, October.
    349. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
    350. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
    351. Ojogho, Osaihiomwan & Egware, Robert Awotu, 2015. "Price Generating Process And Volatility In Nigerian Agricultural Commodities Market," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 3(4), pages 1-10, October.
    352. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    353. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    354. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    355. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    356. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    357. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    358. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    359. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    360. Dimitra Lamprou, 2015. "Nowcasting GDP in Greece: A Note on Forecasting Improvements from the Use of Bridge Models," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(1), pages 85-100.
    361. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
    362. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
    363. Chan-Guk Huh & Jie Wu, 2015. "Linkage between US monetary policy and emerging economies: the case of Korea?s financial market and monetary policy," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(3), pages 1-18, September.
    364. Wang, Jianxin & Yang, Minxian, 2009. "Asymmetric volatility in the foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 597-615, October.
    365. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    366. Sara Boni & Massimiliano Caporin & Francesco Ravazzolo, 2024. "Nowcasting Inflation at Quantiles: Causality from Commodities," BEMPS - Bozen Economics & Management Paper Series BEMPS102, Faculty of Economics and Management at the Free University of Bozen.
    367. Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
    368. Kwon, Ji Ho & Sohn, Bumjean, 2024. "The ICAPM and empirical pricing factors: A simulation study," Finance Research Letters, Elsevier, vol. 60(C).
    369. Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
    370. Hengzhen Lu & Qiujin Gao & Ling Xiao & Gurjeet Dhesi, 2024. "Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models," Review of Managerial Science, Springer, vol. 18(7), pages 1917-1943, July.
    371. Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
    372. Eunjeong Choi & Soohwan Cho & Dong Keun Kim, 2020. "Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability," Sustainability, MDPI, vol. 12(3), pages 1-14, February.
    373. Olajide Oyadeyi, 2024. "Banking Innovation, Financial Inclusion and Economic Growth in Nigeria," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7014-7043, June.
    374. Emmanuel Mamatzakis & Mike G. Tsionas & Steven Ongena, 2023. "Why do households repay their debt in UK during the COVID-19 crisis?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(8), pages 1789-1823, April.
    375. Andrianady, Josué R. & Rajaonarison, Njakanasandratra R. & Razanajatovo, Yves H., 2023. "Estimating Madagascar economic growth using the Mixed Data Sampling (MIDAS) approach," MPRA Paper 118267, University Library of Munich, Germany.
    376. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    377. Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
    378. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    379. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    380. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    381. Helmut Luetkepohl, 2009. "Forecasting Aggregated Time Series Variables: A Survey," Economics Working Papers ECO2009/17, European University Institute.
    382. Motegi, Kaiji & Sadahiro, Akira, 2018. "Sluggish private investment in Japan’s Lost Decade: Mixed frequency vector autoregression approach," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 118-128.
    383. Ryan T. Ball, 2013. "Does Anticipated Information Impose a Cost on Risk‐Averse Investors? A Test of the Hirshleifer Effect," Journal of Accounting Research, Wiley Blackwell, vol. 51(1), pages 31-66, March.
    384. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    385. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    386. Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
    387. Neville Francis, 2012. "The Low-Frequency Impact of Daily Monetary Policy Shock," 2012 Meeting Papers 198, Society for Economic Dynamics.
    388. Tumala, Mohammed M. & Salisu, Afees A. & Atoi, Ngozi V., 2022. "Oil-growth nexus in Nigeria: An ADL-MIDAS approach," Resources Policy, Elsevier, vol. 77(C).
    389. Francisco Blasques & Siem Jan Koopman & Max Mallee, 2014. "Low Frequency and Weighted Likelihood Solutions for Mixed Frequency Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-105/III, Tinbergen Institute.
    390. Visser, Marcel P., 2008. "Forecasting S&P 500 Daily Volatility using a Proxy for Downward Price Pressure," MPRA Paper 11100, University Library of Munich, Germany.
    391. Huang, Lin & Wang, Zijun, 2014. "Is the investment factor a proxy for time-varying investment opportunities? The US and international evidence," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 219-232.
    392. Anders B. Trolle & Eduardo S. Schwartz, 2010. "An Empirical Analysis of the Swaption Cube," NBER Working Papers 16549, National Bureau of Economic Research, Inc.
    393. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    394. Adlai Fisher & Charles Martineau & Jinfei Sheng, 2022. "Macroeconomic Attention and Announcement Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5057-5093.
    395. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    396. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    397. Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
    398. Matěj Liberda, 2017. "Mixed-frequency Drivers of Precious Metal Prices," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 2007-2015.
    399. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    400. Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
    401. Alberto Plazzi & Walter Torous & Rossen Valkanov, 2008. "The Cross‐Sectional Dispersion of Commercial Real Estate Returns and Rent Growth: Time Variation and Economic Fluctuations," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 403-439, September.
    402. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    403. Lv, Wendai & Qi, Jipeng & Feng, Jing, 2023. "Economic policy uncertainty and environmental governance company volatility: Evidence from China," Research in International Business and Finance, Elsevier, vol. 64(C).
    404. Berger, Philip G., 2011. "Challenges and opportunities in disclosure research—A discussion of ‘the financial reporting environment: Review of the recent literature’," Journal of Accounting and Economics, Elsevier, vol. 51(1), pages 204-218.
    405. Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
    406. S. Garg & Vipul, 2014. "Volatility forecasting performance of two-scale realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1111-1121, September.
    407. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    408. Byounghyun Jeon & Sung Won Seo & Jun Sik Kim, 2020. "Uncertainty and the volatility forecasting power of option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1109-1126, July.
    409. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yuan, Jing, 2018. "Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 13-31.
    410. LUPU, Radu & CALIN, Adrian Cantemir, 2014. "A Mixed Frequency Analysis Of Connections Between Macroeconomic Variables And Stock Markets In Central And Eastern Europe," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 18(2), pages 69-79.
    411. Torun, Erdost & Chang, Tzu-Pu & Chou, Ray Y., 2020. "Causal relationship between spot and futures prices with multiple time horizons: A nonparametric wavelet Granger causality test," Research in International Business and Finance, Elsevier, vol. 52(C).
    412. Qian, Hang, 2010. "Linear regression using both temporally aggregated and temporally disaggregated data: Revisited," MPRA Paper 32686, University Library of Munich, Germany.
    413. Zhao, Ling, 2023. "Global economic policy uncertainty and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 54(C).
    414. Stefan Gebauer, 2017. "The Use of Financial Market Variables in Forecasting," DIW Roundup: Politik im Fokus 115, DIW Berlin, German Institute for Economic Research.
    415. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    416. Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
    417. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    418. Zeng, Qing & Zhang, Jixiang & Zhong, Juandan, 2024. "China's futures market volatility and sectoral stock market volatility prediction," Energy Economics, Elsevier, vol. 132(C).
    419. Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023. "Weekly economic activity: Measurement and informational content," International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
    420. Abdul-Aziz Ibn Musah & Jianguo Du & Hira Salah Ud din Khan & Alhassan Alolo Abdul-Rasheed Akeji, 2018. "The Asymptotic Decision Scenarios of an Emerging Stock Exchange Market: Extreme Value Theory and Artificial Neural Network," Risks, MDPI, vol. 6(4), pages 1-24, November.
    421. Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
    422. Lee A. Smales, 2022. "The influence of policy uncertainty on exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 997-1016, August.
    423. Shuting Liu & Qifa Xu & Cuixia Jiang, 2021. "Systemic risk of China’s commercial banks during financial turmoils in 2010-2020: A MIDAS-QR based CoVaR approach," Applied Economics Letters, Taylor & Francis Journals, vol. 28(18), pages 1600-1609, October.
    424. Adam Clements & Ralf Becker, 2009. "A nonparametric approach to forecasting realized volatility," NCER Working Paper Series 43, National Centre for Econometric Research.
    425. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    426. George Filis & Stavros Degiannakis & Zacharias Bragoudakis, 2022. "Forecasting macroeconomic indicators for Eurozone and Greece: How useful are the oil price assumptions?," Working Papers 296, Bank of Greece.
    427. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    428. Robert Akunga & Ahmad Hassan Ahmad & Simeon Coleman, 2023. "Financial market integration in sub‐Saharan Africa: How important is contagion?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3637-3653, October.
    429. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
    430. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    431. Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
    432. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    433. Todorova, Neda & Souček, Michael, 2014. "The impact of trading volume, number of trades and overnight returns on forecasting the daily realized range," Economic Modelling, Elsevier, vol. 36(C), pages 332-340.
    434. Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.
    435. Holmberg, Johan, 2021. "Earnings and Employment Dynamics: Capturing Cyclicality using Mixed Frequency Data," Umeå Economic Studies 991, Umeå University, Department of Economics.

  12. Eric Ghysels & Anders Eriksson Lars Forsberg, 2004. "Approximating the probability distribution of functions of random variables: A new approach," Econometric Society 2004 Far Eastern Meetings 503, Econometric Society.

    Cited by:

    1. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    2. Mencia, Javier F. & Sentana, Enrique, 2004. "Estimation and testing of dynamic models with generalised hyperbolic innovations," LSE Research Online Documents on Economics 24742, London School of Economics and Political Science, LSE Library.
    3. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.
    4. Puzanova, Natalia & Siddiqui, Sikandar & Trede, Mark, 2009. "Approximate value-at-risk calculation for heterogeneous loan portfolios: Possible enhancements of the Basel II methodology," Journal of Financial Stability, Elsevier, vol. 5(4), pages 374-392, December.
    5. Lillestøl, Jostein, 2007. "Some new bivariate IG and NIG-distributions for modelling covariate nancial returns," Discussion Papers 2007/1, Norwegian School of Economics, Department of Business and Management Science.
    6. Bunčák, Tomáš, 2013. "Jump Processes in Exchange Rates Modeling," MPRA Paper 49882, University Library of Munich, Germany.
    7. Liyuan Jiang & Shuang Zhou & Keren Li & Fangfang Wang & Jie Yang, 2018. "A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps," Papers 1808.05289, arXiv.org, revised Feb 2019.
    8. Insan Tunali & Berk Yavuzoglu, 2018. "Edgeworth Expansion Based Correction Of Selectivity Bias In Models Of Double Selection," Working Papers 1802, Nazarbayev University, Department of Economics, revised Nov 2018.

  13. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.

    Cited by:

    1. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, New Economic School (NES).
    2. Elena Andreou & Eric Ghysels, 2007. "Quality Control for Structural Credit Risk Models," University of Cyprus Working Papers in Economics 3-2007, University of Cyprus Department of Economics.

  14. Jennifer Juergens & Evan Anderson & Eric Ghysels, 2004. "Do Heterogeneous Beliefs Matter for Asset Pricing?," Econometric Society 2004 North American Summer Meetings 477, Econometric Society.

    Cited by:

    1. De Santis, Roberto A. & Favero, Carlo A. & Roffia, Barbara, 2008. "Euro area money demand and international portfolio allocation: a contribution to assessing risks to price stability," Working Paper Series 926, European Central Bank.
    2. Todd Feldman & Shuming Liu, 2018. "A New Predictive Measure Using Agent-Based Behavioral Finance," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 941-959, April.
    3. Jongen, R. & Muller, A. & Verschoor, W.F.C., 2012. "Using survey data to resolve the exchange risk exposure puzzle: Evidence from U.S. multinational firms," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 148-169.
    4. Roberto Pascual & David Veredas, 2009. "Does the open limit order book matter in explaining informational volatility?," ULB Institutional Repository 2013/183777, ULB -- Universite Libre de Bruxelles.
    5. Onishchenko, Olena & Zhao, Jing & Kongahawatte, Sampath & Kuruppuarachchi, Duminda, 2024. "Investor heterogeneity and anchoring-induced momentum," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    6. Attig, Najah & El Ghoul, Sadok, 2021. "Flying under the radar: The real effects of anonymous trading," Journal of Corporate Finance, Elsevier, vol. 71(C).
    7. Adam V. Reed & Pedro A. C. Saffi & Edward D. Van Wesep, 2021. "Short-Sales Constraints and the Diversification Puzzle," Management Science, INFORMS, vol. 67(2), pages 1159-1182, February.
    8. Elyès Jouini, 2023. "Belief Dispersion and Convex Cost of Adjustment in the Stock Market and in the Real Economy," Management Science, INFORMS, vol. 69(7), pages 4190-4209, July.
    9. Luisito Bertinelli & Arnaud Bourgain & Florian Léon, 2020. "Corruption and tax compliance: evidence from small retailers in Bamako, Mali," Applied Economics Letters, Taylor & Francis Journals, vol. 27(5), pages 366-370, March.
    10. Paul Söderlind, 2011. "Inflation Risk Premia and Survey Evidence on Macroeconomic Uncertainty," International Journal of Central Banking, International Journal of Central Banking, vol. 7(2), pages 113-133, June.
    11. Luo, Xin & Tao, Yunqing & Zou, Kai, 2022. "A new measure of realized volatility: Inertial and reverse realized semivariance," Finance Research Letters, Elsevier, vol. 47(PA).
    12. Wei Xiong, 2013. "Bubbles, Crises, and Heterogeneous Beliefs," NBER Working Papers 18905, National Bureau of Economic Research, Inc.
    13. Xue-Zhong He & Lei Shi & Min Zheng, 2012. "Asset Pricing Under Keeping Up With the Joneses and Heterogeneous Beliefs," Research Paper Series 302, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Kenneth Kasa & Todd B. Walker & Charles H. Whiteman, 2014. "Heterogeneous Beliefs and Tests of Present Value Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1137-1163.
    15. Söderlind, Paul, 2009. "Why disagreement may not matter (much) for asset prices," Finance Research Letters, Elsevier, vol. 6(2), pages 73-82, June.
    16. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    17. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    18. Katrin Hussinger & Sebastian Pacher, 2018. "Information Ambiguity, Patents and the Market Value of Innovative Assets," DEM Discussion Paper Series 18-17, Department of Economics at the University of Luxembourg.
    19. Beber, Alessandro & Breedon, Francis & Buraschi, Andrea, 2010. "Differences in beliefs and currency risk premiums," Journal of Financial Economics, Elsevier, vol. 98(3), pages 415-438, December.
    20. Aleksejs Krecetovs & Pasquale Della Corte, 2016. "Macro uncertainty and currency premia," 2016 Meeting Papers 624, Society for Economic Dynamics.
    21. Liu, Hao & Zhang, Qun, 2021. "Firm age and realized idiosyncratic return volatility in China: The role of short-sales constraints," International Review of Financial Analysis, Elsevier, vol. 75(C).
    22. Asani Sarkar & Robert A. Schwartz, 2006. "Two-sided markets and intertemporal trade clustering: insights into trading motives," Staff Reports 246, Federal Reserve Bank of New York.
    23. Fabrice Rousseau & Hervé Boco & Laurent Germain, 2016. "Heterogeneous Noisy Beliefs and Dynamic Competition in Financial Markets," Economics Department Working Paper Series n269-16.pdf, Department of Economics, National University of Ireland - Maynooth.
    24. Ehrmann, Michael & Hubert, Paul, 2023. "Information acquisition ahead of monetary policy announcements," Working Paper Series 2770, European Central Bank.
    25. Alexandre Ziegler, 2007. "Why Does Implied Risk Aversion Smile?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 859-904.
    26. Naes, Randi & Skjeltorp, Johannes A., 2006. "Order book characteristics and the volume-volatility relation: Empirical evidence from a limit order market," Journal of Financial Markets, Elsevier, vol. 9(4), pages 408-432, November.
    27. Wang, Hailong & Hu, Duni, 2021. "Heterogeneous beliefs with herding behaviors and asset pricing in two goods world," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    28. Fousseni Chabi-Yo & Eric Ghysels & Eric Renault, 2008. "On Portfolio Separation Theorems with Heterogeneous Beliefs and Attitudes towards Risk," Staff Working Papers 08-16, Bank of Canada.
    29. Li, Yan & Liang, Chao & Huynh, Toan L.D. & He, Qiubei, 2022. "Price reversal and heterogeneous belief," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 104-119.
    30. Vu Tran & Rasha Alsakka & Owain ap Gwilym, 2018. "Multiple credit ratings and market heterogeneity," Working Papers 2018-26, Swansea University, School of Management.
    31. Campbell R. Harvey & Yan Liu & Heqing Zhu, 2014. ". . . and the Cross-Section of Expected Returns," NBER Working Papers 20592, National Bureau of Economic Research, Inc.
    32. Füllbrunn, Sascha & Rau, Holger A. & Weitzel, Utz, 2014. "Does ambiguity aversion survive in experimental asset markets?," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 810-826.
    33. Gauvin, Ludovic & McLoughlin, Cameron & Reinhardt, Dennis, 2014. "Policy uncertainty spillovers to emerging markets – evidence from capital flows," Bank of England working papers 512, Bank of England.
    34. Andrea Buraschi & Fabio Trojani & Andrea Vedolin, 2014. "Economic Uncertainty, Disagreement, and Credit Markets," Management Science, INFORMS, vol. 60(5), pages 1281-1296, May.
    35. Pietro Dindo, 2015. "Survival in Speculative Markets," LEM Papers Series 2015/32, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    36. Jeffrey Hobbs & Hei Wai Lee & Vivek Singh, 2017. "New evidence on the effect of belief heterogeneity on stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 48(2), pages 289-309, February.
    37. He, Xue-Zhong & Shi, Lei, 2017. "Index portfolio and welfare analysis under heterogeneous beliefs," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 64-79.
    38. Hu, Duni & Wang, Hailong, 2024. "Heterogeneous beliefs with preference interdependence and asset pricing," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1-37.
    39. Yang, Mingjing & Cheng, Xiaoke & Chan, Kam C. & Gao, Shenghao, 2018. "Information cost or heterogeneous beliefs? An examination of the impact of value uncertainty on auction-style SEO discounts in China," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 206-217.
    40. Yan Han & Xue-Feng Shao & Xin Cui & Xiao-Guang Yue & Kelvin Joseph Bwalya & Otilia Manta, 2019. "Assessing Investor Belief: An Analysis of Trading for Sustainable Growth of Stock Markets," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    41. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    42. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010, January-A.
    43. H. Henry Cao & Hui Ou-Yang, 2009. "Differences of Opinion of Public Information and Speculative Trading in Stocks and Options," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 299-335, January.
    44. Mariya Letdin & C. Stace Sirmans & G. Stacy Sirmans, 2024. "Spread Too Thin: REIT Asset Dispersion and Divergence of Opinion," The Journal of Real Estate Finance and Economics, Springer, vol. 69(2), pages 201-227, August.
    45. Bo Liu & Kemin Wang, 2019. "Uncertainty of political subsidy, heterogeneous beliefs, and IPO anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 923-951, May.
    46. Carl Chen & Peter Lung & F. Wang, 2013. "Where are the sources of stock market mispricing and excess volatility?," Review of Quantitative Finance and Accounting, Springer, vol. 41(4), pages 631-650, November.
    47. Eric Aldrich, 2012. "Trading Volume in General Equilibrium with Complete Markets," 2012 Meeting Papers 36, Society for Economic Dynamics.
    48. Adem Atmaz & Suleyman Basak, 2018. "Belief Dispersion in the Stock Market," Journal of Finance, American Finance Association, vol. 73(3), pages 1225-1279, June.
    49. Bams, Dennis & Blanchard, Gildas & Honarvar, Iman & Lehnert, Thorsten, 2017. "Does oil and gold price uncertainty matter for the stock market?," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 270-285.
    50. Samdani, Taufique, 2019. "Anchor-backed IPOs, reported earnings, and heterogeneous investors' beliefs," Journal of Corporate Finance, Elsevier, vol. 59(C), pages 72-87.
    51. Hwai-Chung Ho & Chien-Chih Lin, 2011. "Influence of heterogeneous beliefs on volatility when agents' degree of confidence differs," Applied Economics Letters, Taylor & Francis Journals, vol. 18(10), pages 955-959.
    52. Rieger, Jörg, 2014. "Financial Integration with Heterogeneous Beliefs," Working Papers 0568, University of Heidelberg, Department of Economics.
    53. Alexandre Ziegler, 2002. "Why does Implied Risk Aversion Smile?," FAME Research Paper Series rp47, International Center for Financial Asset Management and Engineering.
    54. Vives, Xavier & Yang, Liyan & Mondria, Jordi, 2017. "Costly Interpretation of Asset Prices," CEPR Discussion Papers 12360, C.E.P.R. Discussion Papers.
    55. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    56. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2022. "Policy Uncertainty and Stock Market Volatility Revisited: The Predictive Role of Signal Quality," Working Papers 202232, University of Pretoria, Department of Economics.
    57. Steven D Baker & Burton Hollifield & Emilio Osambela, 2020. "Preventing Controversial Catastrophes," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(1), pages 1-60.
    58. Jin, Shunyao & Kimbrough, Michael D. & Wang, Isabel Yanyan, 2024. "Privileged information access, analyst consensus building, and stock return volatility: Evidence from the JOBS Act," Advances in accounting, Elsevier, vol. 64(C).
    59. Gao, George P. & Lu, Xiaomeng & Song, Zhaogang & Yan, Hongjun, 2019. "Disagreement beta," Journal of Monetary Economics, Elsevier, vol. 107(C), pages 96-113.
    60. Park, Sunjin, 2022. "Heterogeneous beliefs in macroeconomic growth prospects and the carry risk premium," Journal of Banking & Finance, Elsevier, vol. 136(C).
    61. Anastassia Fedyk, 2018. "Disagreement after News: Gradual Information Diffusion or Differences of Opinion?," 2018 Meeting Papers 1095, Society for Economic Dynamics.
    62. Chi, Jianxin (Daniel) & Gupta, Manu, 2009. "Overvaluation and earnings management," Journal of Banking & Finance, Elsevier, vol. 33(9), pages 1652-1663, September.
    63. Hussinger, Katrin & Pacher, Sebastian, 2014. "Information ambiguity and firm value," ZEW Discussion Papers 14-093, ZEW - Leibniz Centre for European Economic Research.
    64. Leonardo Iania & Robbe Collage & Michiel Vereycken, 2023. "The Impact of Uncertainty in Macroeconomic Variables on Stock Returns in the USA," JRFM, MDPI, vol. 16(3), pages 1-15, March.
    65. Wang, Hailong & Hu, Duni, 2020. "Disagreement with procyclical beliefs and asset pricing," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    66. Dunne, Peter & Hau, Harald & Moore, Michael, 2010. "International order flows: Explaining equity and exchange rate returns," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 358-386, March.
    67. Graham, John R. & Harvey, Campbell R. & Rajgopal, Shiva, 2005. "The economic implications of corporate financial reporting," Journal of Accounting and Economics, Elsevier, vol. 40(1-3), pages 3-73, December.
    68. Huisman, Ronald & Van der Sar, Nico L. & Zwinkels, Remco C.J., 2021. "Volatility expectations and disagreement," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 379-393.
    69. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    70. De Santis, Roberto A. & Ehling, Paul, 2007. "Do international portfolio investors follow firms' foreign investment decisions?," Working Paper Series 815, European Central Bank.
    71. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
    72. D. Schneller & S. Heiden & M. Heiden & A. Hamid, 2018. "Home is Where You Know Your Volatility – Local Investor Sentiment and Stock Market Volatility," German Economic Review, Verein für Socialpolitik, vol. 19(2), pages 209-236, May.
    73. Shi, Lei, 2016. "Consumption-based CAPM with belief heterogeneity," Journal of Economic Dynamics and Control, Elsevier, vol. 65(C), pages 30-46.
    74. de Oliveira Souza, Thiago, 2019. "Predictability concentrates in bad times. And so does disagreement," Discussion Papers on Economics 8/2019, University of Southern Denmark, Department of Economics.
    75. Junjun Ma & Xindan Li & Lei Lu & Weixing Wu & Xiong Xiong, 2022. "Individual investors' dispersion in beliefs and stock returns," Financial Management, Financial Management Association International, vol. 51(3), pages 929-953, September.
    76. Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
    77. Anderson, Evan W. & Ghysels, Eric & Juergens, Jennifer L., 2009. "The impact of risk and uncertainty on expected returns," Journal of Financial Economics, Elsevier, vol. 94(2), pages 233-263, November.
    78. Xue-Zhong He & Lei Shi, 2012. "Heterogeneous Beliefs and the Cross-Section of Asset Returns," Research Paper Series 303, Quantitative Finance Research Centre, University of Technology, Sydney.
    79. Xue-Zhong He & Lei Shi, 2010. "Differences in Opinion and Risk Premium," Research Paper Series 271, Quantitative Finance Research Centre, University of Technology, Sydney.
    80. Ikeda, Naoshi, 2023. "Optimism, divergence of investors’ opinions, and the long-run underperformance of IPOs," Journal of Financial Markets, Elsevier, vol. 64(C).
    81. Shin S. Ikeda & Yan Zhang, 2012. "Heterogeneous Beliefs, a Short-Sale Restriction, and the Cross Section of Stock Returns: An Evidence from China," GRIPS Discussion Papers 12-12, National Graduate Institute for Policy Studies.
    82. Yang, Jianlei & Yang, Chunpeng & Hu, Xiaoyi, 2021. "Economic policy uncertainty dispersion and excess returns: Evidence from China," Finance Research Letters, Elsevier, vol. 40(C).
    83. Gupta-Mukherjee, Swasti, 2013. "When active fund managers deviate from their peers: Implications for fund performance," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1286-1305.
    84. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    85. Wang, Hailong & Hu, Duni, 2022. "Heterogenous beliefs with sentiments and asset pricing," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    86. Nezafat, Mahdi & Shen, Tao & Wang, Qinghai & Wu, Julie, 2022. "Longs, shorts, and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 138(C).
    87. Pohl, Walter & Schmedders, Karl & Wilms, Ole, 2021. "Asset pricing with heterogeneous agents and long-run risk," Journal of Financial Economics, Elsevier, vol. 140(3), pages 941-964.
    88. Benjamin Croitoru & Lei Lu, 2015. "Asset Pricing in a Monetary Economy with Heterogeneous Beliefs," Management Science, INFORMS, vol. 61(9), pages 2203-2219, September.
    89. Hillert, Alexander & Jacobs, Heiko & Müller, Sebastian, 2018. "Journalist disagreement," Journal of Financial Markets, Elsevier, vol. 41(C), pages 57-76.
    90. Hayette Gatfaoui, 2010. "Capital Asset Pricing Model," Post-Print hal-00589904, HAL.
    91. Riccardo Colacito & Mariano M. Croce, 2012. "International Robust Disagreement," American Economic Review, American Economic Association, vol. 102(3), pages 152-155, May.
    92. Steven D. Baker & Burton Hollifield & Emilio Osambela, 2018. "Preventing Controversial Catastrophes," Finance and Economics Discussion Series 2018-052, Board of Governors of the Federal Reserve System (U.S.).
    93. Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
    94. Zhang, Zuochao & Goodell, John W. & Shen, Dehua & Lahmar, Oumaima, 2024. "Media opinion divergence and stock returns: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 93(C).
    95. Fatemi, Ali & Glaum, Martin & Kaiser, Stefanie, 2018. "ESG performance and firm value: The moderating role of disclosure," Global Finance Journal, Elsevier, vol. 38(C), pages 45-64.
    96. Mirza Faizan Ahmed, 2019. "Estimating proportion of noise traders and asset prices," Business Review, School of Economics and Social Sciences, IBA Karachi, vol. 14(2), pages 1-12, July-Dece.
    97. Kang, Hyung Cheol & Lee, Dong Wook & Park, Kyung Suh, 2010. "Does the difference in valuation between domestic and foreign investors help explain their distinct holdings of domestic stocks?," Journal of Banking & Finance, Elsevier, vol. 34(12), pages 2886-2896, December.
    98. Sheng, Jiliang & Xu, Si & An, Yunbi & Yang, Jun, 2022. "Dynamic asset pricing in delegated investment: An investigation from the perspective of heterogeneous beliefs of institutional and retail investors," Economic Modelling, Elsevier, vol. 107(C).
    99. Peter C. Dawson, 2015. "The capital asset pricing model in economic perspective," Applied Economics, Taylor & Francis Journals, vol. 47(6), pages 569-598, February.
    100. Gong, Qiang & Jacoby, Gady & Li, Shi & Lu, Lei, 2021. "Commonality in disagreement," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    101. Zhiqi Cao & Wenfeng Wu, 2023. "Difference of opinion among investors versus analysts," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(2), pages 2347-2381, June.
    102. Hibbert, Ann Marie & Kang, Qiang & Kumar, Alok & Mishra, Suchi, 2020. "Heterogeneous beliefs and return volatility around seasoned equity offerings," Journal of Financial Economics, Elsevier, vol. 137(2), pages 571-589.
    103. Saskia ter Ellen & Willem F.C. Verschoor & Remco C.J. Zwinkels, 2016. "Agreeing on disagreement: heterogeneity or uncertainty?," Working Paper 2016/4, Norges Bank.
    104. Feng, Shu & Zhang, Yi & Friesen, Geoffrey C., 2015. "The relationship between the option-implied volatility smile, stock returns and heterogeneous beliefs," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 62-73.

  15. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.

    Cited by:

    1. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    2. Etienne, Xiaoli, 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices," 2015 Conference, August 9-14, 2015, Milan, Italy 211626, International Association of Agricultural Economists.
    3. Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
    4. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    5. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
    6. Markus Leippold & Hanlin Yang, 2023. "Mixed‐frequency predictive regressions with parameter learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1955-1972, December.
    7. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    8. Carl Bonham & Peter Fuleky & James Jones & Ashley Hirashima, 2015. "Nowcasting Tourism Industry Performance Using High Frequency Covariates," Working Papers 2015-13R, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2016.
    9. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Post-Print hal-03647097, HAL.
    10. Hager Ben Romdhane, 2021. "Nowcasting in Tunisia using large datasets and mixed frequency models," IHEID Working Papers 11-2021, Economics Section, The Graduate Institute of International Studies.
    11. Prabheesh, K.P. & Sasongko, Aryo & Indawan, Fiskara, 2023. "Did the policy responses influence credit and business cycle co-movement during the COVID-19 crisis? Evidence from Indonesia," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 243-255.
    12. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    13. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
    15. Edward S. Knotek & Saeed Zaman, 2024. "Nowcasting Inflation," Working Papers 24-06, Federal Reserve Bank of Cleveland.
    16. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    17. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    18. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    19. Kaustubh & Soumya Bhadury & Saurabh Ghosh, 2024. "Reinvigorating Gva Nowcasting In The Postpandemic Period: A Case Study For India," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 27(Spesial I), pages 95-130, Februari.
    20. Harchaoui, Tarek M. & Janssen, Robert V., 2018. "How can big data enhance the timeliness of official statistics?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 225-234.
    21. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    22. Holmes, Mark J. & Iregui, Ana María & Otero, Jesús, 2021. "The effects of FX-interventions on forecasters disagreement: A mixed data sampling view," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    23. Raquel Nadal Cesar Gonçalves, 2022. "Nowcasting Brazilian GDP with Electronic Payments Data," Working Papers Series 564, Central Bank of Brazil, Research Department.
    24. Helena Rodríguez, 2014. "Un indicador de la evolución del PIB uruguayo en tiempo real," Documentos de trabajo 2014009, Banco Central del Uruguay.
    25. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    26. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    27. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
    28. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
    29. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    30. Yose Rizal Damuri & Prabaning Tyas & Haryo Aswicahyono & Lionel Priyadi & Stella Kusumawardhani & Ega Kurnia Yazid, 2021. "Tracking the Ups and Downs in Indonesia’s Economic Activity During COVID-19 Using Mobility Index: Evidence from Provinces in Java and Bali," Working Papers DP-2021-18, Economic Research Institute for ASEAN and East Asia (ERIA).
    31. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    32. Cláudia Duarte, 2015. "Covariate-augmented unit root tests with mixed-frequency data," Working Papers w201507, Banco de Portugal, Economics and Research Department.
    33. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
    34. Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 14828, Departamento Nacional de Planeación.
    35. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    36. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
    37. Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
    38. Marie Bessec, 2019. "Revisiting the transitional dynamics of business-cycle phases with mixed-frequency data," Post-Print hal-02181552, HAL.
    39. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    40. Anthony S. Tay, 2006. "Mixing Frequencies : Stock Returns as a Predictor of Real Output Growth," Macroeconomics Working Papers 22480, East Asian Bureau of Economic Research.
    41. Hui Jun ZHANG & Jean-Marie DUFOUR & John W. GALBRAITH, 2013. "Exchange Rates and Commodity Prices : Measuring Causality at Multiple Horizons," Cahiers de recherche 14-2013, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    42. Monokroussos, George & Zhao, Yongchen, 2020. "Nowcasting in real time using popularity priors," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
    43. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    44. Götz, T.B. & Hecq, A.W., 2013. "Nowcasting causality in mixed frequency vector autoregressive models," Research Memorandum 050, Maastricht University, Graduate School of Business and Economics (GSBE).
    45. Michael W. McCracken & Michael T. Owyang & Tatevik Sekhposyan, 2021. "Real-Time Forecasting and Scenario Analysis Using a Large Mixed-Frequency Bayesian VAR," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-41, December.
    46. Wang, Nianling & Yin, Jiyuan & Li, Yong, 2024. "Economic policy uncertainty and stock market volatility in China: Evidence from SV-MIDAS-t model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    47. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    48. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    49. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    50. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    51. Langedijk, Sven & Monokroussos, George & Papanagiotou, Evangelia, 2015. "Benchmarking Liquidity Proxies: Accounting for Dynamics and Frequency Issues," MPRA Paper 61865, University Library of Munich, Germany.
    52. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    53. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    54. Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
    55. Francesco Ravazzolo & Joaquin Vespignani, 2017. "World steel production: A new monthly indicator of global real economic activity," CAMA Working Papers 2017-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    56. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    57. Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
    58. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    59. Michelle T. Armesto & Ruben Hernandez-Murillo & Michael T. Owyang & Jeremy M. Piger, 2007. "Identifying asymmetry in the language of the Beige Book: a mixed data sampling approach," Working Papers 2007-010, Federal Reserve Bank of St. Louis.
    60. Jiang, Cuixia & Nie, Yubing & Xu, Qifa, 2023. "A MIDAS multinomial logit model with applications for bond ratings," Global Finance Journal, Elsevier, vol. 57(C).
    61. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    62. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    63. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
    64. Tingguo Zheng & Xinyue Fan & Wei Jin & Kuangnan Fang, 2024. "Forecasting CPI with multisource data: The value of media and internet information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 702-753, April.
    65. David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    66. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    67. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
    68. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    69. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
    70. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    71. Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
    72. Fokin, Nikita, 2021. "The importance of modeling structural breaks in forecasting Russian GDP," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 5-29.
    73. Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
    74. Ba Chu & Shafiullah Qureshi, 2021. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Carleton Economic Papers 21-12, Carleton University, Department of Economics.
    75. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Forecasting Mixed Frequency Time Series with ECM-MIDAS Models," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    76. Virk, Nader & Javed, Farrukh, 2017. "European equity market integration and joint relationship of conditional volatility and correlations," Journal of International Money and Finance, Elsevier, vol. 71(C), pages 53-77.
    77. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    78. Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
    79. Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
    80. Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
    81. Michael Boldin & Jonathan H. Wright, 2015. "Weather-Adjusting Economic Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(2 (Fall)), pages 227-278.
    82. Jonas E. Arias & Minchul Shin, 2020. "Tracking U.S. Real GDP Growth During the Pandemic," Economic Insights, Federal Reserve Bank of Philadelphia, vol. 5(3), pages 9-14, September.
    83. Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
    84. Hong Shen & Qi Pan, 2022. "Risk Contagion between Commodity Markets and the Macro Economy during COVID-19: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    85. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    86. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    87. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
    88. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    89. Hamilton, James D., 2008. "Daily monetary policy shocks and new home sales," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1171-1190, October.
    90. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    91. Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
    92. Daniel Barth & R. Jay Kahn & Phillip J. Monin & Oleg Sokolinskiy, 2024. "Reaching for Duration and Leverage in the Treasury Market," Finance and Economics Discussion Series 2024-039, Board of Governors of the Federal Reserve System (U.S.).
    93. Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
    94. Alexander Chudik & Valerie Grossman & M. Hashem Pesaran, 2014. "A multi-country approach to forecasting output growth using PMIs," Globalization Institute Working Papers 213, Federal Reserve Bank of Dallas.
    95. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
    96. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
    97. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    98. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    99. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    100. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    101. Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
    102. Sensoy, Ahmet & Ozturk, Kevser & Hacihasanoglu, Erk, 2014. "Constructing a financial fragility index for emerging countries," Finance Research Letters, Elsevier, vol. 11(4), pages 410-419.
    103. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    104. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201305, University of Hawaii at Manoa, Department of Economics.
    105. Robert M. Kunst & Martin Wagner, 2020. "Economic forecasting: editors’ introduction," Empirical Economics, Springer, vol. 58(1), pages 1-5, January.
    106. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    107. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, July.
    108. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
    109. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    110. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    111. Hanslin Grossmann, Sandra & Scheufele, Rolf, 2015. "Foreign PMIs: A reliable indicator for Swiss exports," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112830, Verein für Socialpolitik / German Economic Association.
    112. Bhadury, Soumya & Ghosh, Saurabh & Kumar, Pankaj, 2019. "Nowcasting GDP Growth Using a Coincident Economic Indicator for India," MPRA Paper 96007, University Library of Munich, Germany.
    113. Valadkhani, Abbas & Smyth, Russell, 2018. "Asymmetric responses in the timing, and magnitude, of changes in Australian monthly petrol prices to daily oil price changes," Energy Economics, Elsevier, vol. 69(C), pages 89-100.
    114. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    115. Wang, Qin & Li, Xianhua, 2024. "Copula-MIDAS-TRV model for risk spillover analysis − Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    116. Zian Wang & Xinshu Li, 2024. "On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures," Papers 2409.08355, arXiv.org.
    117. Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
    118. Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
    119. Mahmood, Asif & Masood, Hina, 2024. "A High-frequency Monthly Measure of Real Economic Activity in Pakistan," MPRA Paper 121838, University Library of Munich, Germany.
    120. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    121. Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
    122. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    123. Lee, Chien-Chiang & Chen, Mei-Ping & Chang, Chi-Hung, 2014. "Industry co-movement and cross-listing: Do home country factors matter?," Japan and the World Economy, Elsevier, vol. 32(C), pages 96-110.
    124. Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
    125. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    126. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
    127. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    128. Ye, Wuyi & Jiang, Kunliang & Liu, Xiaoquan, 2021. "Financial contagion and the TIR-MIDAS model," Finance Research Letters, Elsevier, vol. 39(C).
    129. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    130. Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
    131. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2017. "Mixed-frequency models for tracking short-term economic developments in Switzerland," Working Papers 2017-02, Swiss National Bank.
    132. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    133. Huawei Niu & Tianyu Liu, 2024. "Forecasting the volatility of European Union allowance futures with macroeconomic variables using the GJR-GARCH-MIDAS model," Empirical Economics, Springer, vol. 67(1), pages 75-96, July.
    134. Dang, Dong Quang & Wu, Weiou & Korkos, Ioannis, 2024. "Stock market and inequality distributions – Evidence from the BRICS and G7 countries," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1172-1190.
    135. Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
    136. Hirashima, Ashley & Jones, James & Bonham, Carl S. & Fuleky, Peter, 2017. "Forecasting in a Mixed Up World: Nowcasting Hawaii Tourism," Annals of Tourism Research, Elsevier, vol. 63(C), pages 191-202.
    137. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    138. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    139. Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
    140. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    141. Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
    142. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    143. Julien Chevallier, 2021. "Covid-19 Outbreak and CO2 Emissions: Macro-Financial Linkages," Working Papers 2021-004, Department of Research, Ipag Business School.
    144. Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna Rodríguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
    145. Charfeddine, Lanouar & Klein, Tony & Walther, Thomas, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," QBS Working Paper Series 2018/03, Queen's University Belfast, Queen's Business School.
    146. Schreiber, Sven, 2018. "Weather-induced Short-term Fluctuations of Economic Output," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181622, Verein für Socialpolitik / German Economic Association.
    147. Sampi Bravo,James Robert Ezequiel & Jooste,Charl, 2020. "Nowcasting Economic Activity in Times of COVID-19 : An Approximation from the Google Community Mobility Report," Policy Research Working Paper Series 9247, The World Bank.
    148. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Nowcasting," Working Papers ECARES ECARES 2010-021, ULB -- Universite Libre de Bruxelles.
    149. William A. Barnett & Marcelle Chauvetz & Danilo Leiva-Leonx, 2014. "Real-Time Nowcasting Nominal GDP Under Structural Break," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201313, University of Kansas, Department of Economics, revised Feb 2014.
    150. S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions, Second Version," PIER Working Paper Archive 08-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 04 Apr 2008.
    151. Ioannis Kasparis & Peter C.B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1700, Cowles Foundation for Research in Economics, Yale University.
    152. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    153. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    154. Adam Bahelka & Harmen de Weerd, 2024. "Comparative analysis of Mixed-Data Sampling (MIDAS) model compared to Lag-Llama model for inflation nowcasting," Papers 2407.08510, arXiv.org.
    155. MAMATZAKIS, emmanuel & MAMATZAKIS, E, 2022. "Understanding the impact of travel on wellbeing: evidence for Great Britain during the pandemic," MPRA Paper 112974, University Library of Munich, Germany.
    156. Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
    157. Lynda Khalaf & Maral Kichian & Charles Saunders & Marcel Voia, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Post-Print hal-03528880, HAL.
    158. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    159. Philip Hans Franses & Eva Janssens, 2017. "Recovering Historical Inflation Data from Postage Stamps Prices," JRFM, MDPI, vol. 10(4), pages 1-11, November.
    160. Shang, Yuhuang & Zheng, Tingguo, 2021. "Mixed-frequency SV model for stock volatility and macroeconomics," Economic Modelling, Elsevier, vol. 95(C), pages 462-472.
    161. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    162. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    163. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    164. Li, Wei & Zhang, Junchao & Cao, Xiangye & Han, Wei, 2024. "Is the prediction of precious metal market volatility influenced by internet searches regarding uncertainty?," Finance Research Letters, Elsevier, vol. 62(PB).
    165. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    166. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    167. Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
    168. Tibor Szendrei & Arnab Bhattacharjee & Mark E. Schaffer, 2024. "MIDAS-QR with 2-Dimensional Structure," Papers 2406.15157, arXiv.org.
    169. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Cholesky-MIDAS model for predicting stock portfolio volatility," Centre for Growth and Business Cycle Research Discussion Paper Series 149, Economics, The University of Manchester.
    170. Xu Gong & Mingchao Wang & Liuguo Shao, 2022. "The impact of macro economy on the oil price volatility from the perspective of mixing frequency," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4487-4514, October.
    171. Shrub, Yuliya & Rieger, Jonas & Müller, Henrik & Jentsch, Carsten, 2022. "Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators," Ruhr Economic Papers 964, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    172. Marozzi, Armando, 2021. "The ECB's tracker: nowcasting the press conferences of the ECB," Working Paper Series 2609, European Central Bank.
    173. Diakonova, Marina & Ghirelli, Corinna & Molina, Luis & Pérez, Javier J., 2023. "The economic impact of conflict-related and policy uncertainty shocks: The case of Russia," International Economics, Elsevier, vol. 174(C), pages 69-90.
    174. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    175. He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
    176. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    177. Guerrero Víctor M. & García Andrea C. & Sainz Esperanza, 2013. "Rapid Estimates of Mexico’s Quarterly GDP," Journal of Official Statistics, Sciendo, vol. 29(3), pages 397-423, June.
    178. Akbar Marvasti & Sami Dakhlia, 2021. "Minimum information management and price‐abundance relationships in a fishery," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(4), pages 491-518, December.
    179. Chaudhuri, Malika & Calantone, Roger J. & Voorhees, Clay M. & Cockrell, Seth, 2018. "Disentangling the effects of promotion mix on new product sales: An examination of disaggregated drivers and the moderating effect of product class," Journal of Business Research, Elsevier, vol. 90(C), pages 286-294.
    180. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    181. Ramadani Gani & Petrovska Magdalena & Bucevska Vesna, 2021. "Evaluation of Mixed Frequency Approaches for Tracking Near-Term Economic Developments in North Macedonia," South East European Journal of Economics and Business, Sciendo, vol. 16(2), pages 43-52, December.
    182. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    183. Andrii Babii, 2020. "High-dimensional mixed-frequency IV regression," Papers 2003.13478, arXiv.org.
    184. Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
    185. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
    186. Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
    187. Emmanuel C. Mamatzakis & Steven Ongena & Mike G. Tsionas, 2023. "The response of household debt to COVID-19 using a neural networks VAR in OECD," Empirical Economics, Springer, vol. 65(1), pages 65-91, July.
    188. Jonathan Dark & Xin Gao & Thijs van der Heijden & Federico Nardari, 2022. "Forecasting variance swap payoffs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2135-2164, December.
    189. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    190. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
    191. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    192. Cuixia Jiang & Tingting Zhao & Qifa Xu & Dan Hu, 2024. "An unrestricted MIDAS ordered logit model with applications to credit ratings," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2722-2739, July.
    193. Markus Heinrich & Magnus Reif, 2020. "Real-Time Forecasting Using Mixed-Frequency VARS with Time-Varying Parameters," CESifo Working Paper Series 8054, CESifo.
    194. Valentina Aprigliano & Guerino Ardizzi & Alessia Cassetta & Alessandro Cavallero & Simone Emiliozzi & Alessandro Gambini & Nazzareno Renzi & Roberta Zizza, 2021. "Exploiting payments to track Italian economic activity: the experience at Banca d’Italia," Questioni di Economia e Finanza (Occasional Papers) 609, Bank of Italy, Economic Research and International Relations Area.
    195. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Post-Print halshs-04344131, HAL.
    196. Chaoyi Chen & Yiguo Sun & Yao Rao, 2023. "Threshold MIDAS Forecasting of Inflation Rate," Working Papers 202314, University of Liverpool, Department of Economics.
    197. Wink Junior, Marcos Vinício & Pereira, Pedro Luiz Valls, 2011. "Modeling and Forecasting of Realized Volatility: Evidence from Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
    198. Emilian DOBRESCU, 2020. "Self-fulfillment degree of economic expectations within an integrated space: The European Union case study," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-32, December.
    199. Dario Buono & George Kapetanios & Massimiliano Marcellino & Gianluigi Mazzi & Fotis Papailias, 2018. "Big Data Econometrics: Now Casting and Early Estimates," BAFFI CAREFIN Working Papers 1882, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    200. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    201. Chunpeng Yang & Rengui Zhang, 2014. "Does mixed-frequency investor sentiment impact stock returns? Based on the empirical study of MIDAS regression model," Applied Economics, Taylor & Francis Journals, vol. 46(9), pages 966-972, March.
    202. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    203. d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
    204. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    205. Edward S. Knotek & Saeed Zaman, 2017. "Nowcasting U.S. Headline and Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
    206. Zhang, Jin & Li, Pujiang & Zhao, Guochang, 2018. "Is power generation really the gold measure of the Chinese economy? A conceptual and empirical assessment," Energy Policy, Elsevier, vol. 121(C), pages 211-216.
    207. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    208. Frömmel, Michael & Midiliç, Murat, 2021. "Daily currency interventions in an emerging market: Incorporating reserve accumulation to the reaction function," Economic Modelling, Elsevier, vol. 97(C), pages 461-476.
    209. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    210. Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
    211. Wang, Xinyu & Qi, Zikang & Huang, Jianglu, 2023. "How do monetary shock, financial crisis, and quotation reform affect the long memory of exchange rate volatility? Evidence from major currencies," Economic Modelling, Elsevier, vol. 120(C).
    212. Sihong Chen & Qi Li & Qiaoyu Wang & Yu Yvette Zhang, 2023. "Multivariate models of commodity futures markets: a dynamic copula approach," Empirical Economics, Springer, vol. 64(6), pages 3037-3057, June.
    213. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
    214. Naif Alsagr & Stefan F. Van Hemmen Almazor, 2020. "Oil Rent, Geopolitical Risk and Banking Sector Performance," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 305-314.
    215. Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
    216. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    217. Kajal Lahiri & George Monokroussos, 2011. "Nowcasting US GDP: The role of ISM Business Surveys," Discussion Papers 11-01, University at Albany, SUNY, Department of Economics.
    218. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    219. Yang, Jianlei & Yang, Chunpeng, 2021. "The impact of mixed-frequency geopolitical risk on stock market returns," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 226-240.
    220. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2024. "Nowcasting Norwegian household consumption with debit card transaction data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1220-1244, November.
    221. Franky Juliano Galeano-Ramírez & Nicolás Martínez-Cortés & Carlos D. Rojas-Martínez, 2021. "Nowcasting Colombian Economic Activity: DFM and Factor-MIDAS approaches," Borradores de Economia 1168, Banco de la Republica de Colombia.
    222. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    223. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
    224. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    225. Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
    226. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    227. Turhan, Ibrahim M. & Sensoy, Ahmet & Hacihasanoglu, Erk, 2015. "Shaping the manufacturing industry performance: MIDAS approach," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 286-290.
    228. Feng-Li Lin & Mei-Chih Wang, 2019. "Does economic growth cause military expenditure to go up? Using MF-VAR model," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(6), pages 3097-3117, November.
    229. Maria Begicheva & Alexey Zaytsev, 2021. "Bank transactions embeddings help to uncover current macroeconomics," Papers 2110.12000, arXiv.org, revised Dec 2021.
    230. Peng-Fei Dai & Xiong Xiong & Wei-Xing Zhou, 2020. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Papers 2007.12838, arXiv.org.
    231. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    232. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    233. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
    234. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    235. Murat Körs & Mehmet Baha Karan, 2023. "Stock exchange volatility forecasting under market stress with MIDAS regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 295-306, January.
    236. William A. Barnett & Marcelle Chauvet & Danilo Leiva-Leon, 2014. "Real-Time Nowcasting of Nominal GDP Under Structural Breaks," Staff Working Papers 14-39, Bank of Canada.
    237. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    238. Jian Chai & Puju Cao & Xiaoyang Zhou & Kin Keung Lai & Xiaofeng Chen & Siping (Sue) Su, 2018. "The Conductive and Predictive Effect of Oil Price Fluctuations on China’s Industry Development Based on Mixed-Frequency Data," Energies, MDPI, vol. 11(6), pages 1-14, May.
    239. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55, July.
    240. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    241. James D. Hamilton, 2008. "Daily Monetary Policy Shocks and the Delayed Response of New Home Sales," NBER Working Papers 14223, National Bureau of Economic Research, Inc.
    242. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
    243. Bhaghoe, Sailesh & Ooft, Gavin, 2021. "Nowcasting Quarterly GDP Growth in Suriname with Factor-MIDAS and Mixed-Frequency VAR Models," Studies in Applied Economics 176, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
    244. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    245. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
    246. Alejandro Fernández Cerezo, 2023. "A supply-side GDP nowcasting model," Economic Bulletin, Banco de España, issue 2023/Q1.
    247. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    248. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2017. "Using the payment system data to forecast the Italian GDP," Temi di discussione (Economic working papers) 1098, Bank of Italy, Economic Research and International Relations Area.
    249. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    250. Gao, Bin & Yang, Chunpeng, 2017. "Forecasting stock index futures returns with mixed-frequency sentiment," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 69-83.
    251. Boriss Siliverstovs, 2015. "Dissecting the purchasing managers' index," KOF Working papers 15-376, KOF Swiss Economic Institute, ETH Zurich.
    252. Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
    253. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    254. Simona Boffelli & Vasiliki D. Skintzi & Giovanni Urga, 2017. "High- and Low-Frequency Correlations in European Government Bond Spreads and Their Macroeconomic Drivers," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 62-105.
    255. J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
    256. Barnett, William A. & Chauvet, Marcelle & Leiva-Leon, Danilo, 2016. "Real-time nowcasting of nominal GDP with structural breaks," Journal of Econometrics, Elsevier, vol. 191(2), pages 312-324.
    257. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    258. Tony Chernis & Rodrigo Sekkel, 2018. "Nowcasting Canadian Economic Activity in an Uncertain Environment," Discussion Papers 18-9, Bank of Canada.
    259. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    260. Thomas Walther & Tony Klein, 2018. "Exogenous Drivers of Cryptocurrency Volatility - A Mixed Data Sampling Approach To Forecasting," Working Papers on Finance 1815, University of St. Gallen, School of Finance.
    261. Mahmut Gunay, 2018. "Nowcasting Annual Turkish GDP Growth with MIDAS," CBT Research Notes in Economics 1810, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    262. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
    263. Modugno, Michele, 2011. "Nowcasting inflation using high frequency data," Working Paper Series 1324, European Central Bank.
    264. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    265. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
    266. Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
    267. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    268. Lourenço, Nuno & Rua, António, 2021. "The Daily Economic Indicator: tracking economic activity daily during the lockdown," Economic Modelling, Elsevier, vol. 100(C).
    269. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    270. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    271. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    272. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    273. Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
    274. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    275. Sara Boni & Massimiliano Caporin & Francesco Ravazzolo, 2024. "Nowcasting Inflation at Quantiles: Causality from Commodities," BEMPS - Bozen Economics & Management Paper Series BEMPS102, Faculty of Economics and Management at the Free University of Bozen.
    276. Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
    277. Hengzhen Lu & Qiujin Gao & Ling Xiao & Gurjeet Dhesi, 2024. "Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models," Review of Managerial Science, Springer, vol. 18(7), pages 1917-1943, July.
    278. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
    279. Tretyakov, Dmitriy & Fokin, Nikita, 2020. "Помогают Ли Высокочастотные Данные В Прогнозировании Российской Инфляции? [Does the high-frequency data is helpful for forecasting Russian inflation?]," MPRA Paper 109556, University Library of Munich, Germany.
    280. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    281. Emmanuel Apergis & Nicholas Apergis, 2021. "Can the COVID-19 Pandemic and Oil Prices Drive the US Partisan Conflict Index," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.
    282. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    283. Olajide Oyadeyi, 2024. "Banking Innovation, Financial Inclusion and Economic Growth in Nigeria," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7014-7043, June.
    284. Yun Liu & Yeonwoo Rho, 2018. "On the Choice of Instruments in Mixed Frequency Specification Tests," Papers 1809.05503, arXiv.org.
    285. Emmanuel Mamatzakis & Mike G. Tsionas & Steven Ongena, 2023. "Why do households repay their debt in UK during the COVID-19 crisis?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(8), pages 1789-1823, April.
    286. Hagher Ben Rhomdhane & Brahim Mehdi Benlallouna, 2022. "Nowcasting real GDP in Tunisia using large datasets and mixed-frequency models," IHEID Working Papers 02-2022, Economics Section, The Graduate Institute of International Studies.
    287. Guy P. Nason & James L. Wei, 2022. "Quantifying the economic response to COVID‐19 mitigations and death rates via forecasting purchasing managers' indices using generalised network autoregressive models with exogenous variables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1778-1792, October.
    288. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
    289. Ogbonna, Ahamuefula E. & Farag, Markos & Akintande, Olalekan J. & Yaya, OlaOluwa S. & Olubusoye, Olusanya E., 2024. "Re-validating the Phillips Curve hypothesis in Africa and the role of oil prices: A mixed-frequency approach," Energy, Elsevier, vol. 303(C).
    290. Julián Alonso Cárdenas-Cárdenas & Edgar Caicedo-García & Eliana R. González Molano, 2020. "Estimación de la variación del precio de los alimentos con modelos de frecuencias mixtas," Borradores de Economia 1109, Banco de la Republica de Colombia.
    291. Xiaqing Su & Zhe Liu, 2021. "Sector Volatility Spillover and Economic Policy Uncertainty: Evidence from China’s Stock Market," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    292. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
    293. Sandra Hanslin Grossmann & Rolf Scheufele, 2016. "Foreign PMIs: A reliable indicator for exports?," Working Papers 2016-01, Swiss National Bank.
    294. Zian Wang & Xinyi Lu, 2024. "COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning," Papers 2409.08356, arXiv.org.
    295. Motegi, Kaiji & Sadahiro, Akira, 2018. "Sluggish private investment in Japan’s Lost Decade: Mixed frequency vector autoregression approach," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 118-128.
    296. Zhang Wu & Terence Tai-Leung Chong, 2021. "Does the macroeconomy matter to market volatility? Evidence from US industries," Empirical Economics, Springer, vol. 61(6), pages 2931-2962, December.
    297. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    298. Marie Bessec, 2015. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Post-Print hal-01276824, HAL.
    299. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    300. Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 373-402, National Bureau of Economic Research, Inc.
    301. Lee, Chien-Chiang & Chen, Mei-Ping, 2020. "Do natural disasters and geopolitical risks matter for cross-border country exchange-traded fund returns?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    302. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    303. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    304. Bahram Adrangi & Arjun Chatrath & Kambiz Raffiee, 2023. "S&P 500 volatility, volatility regimes, and economic uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1362-1387, October.
    305. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    306. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    307. Conefrey, Thomas & Walsh, Graeme, 2018. "A Monthly Indicator of Economic Activity for Ireland," Economic Letters 14/EL/18, Central Bank of Ireland.
    308. Dutta, Anupam & Uddin, Gazi Salah & Sheng, Lin Wen & Park, Donghyun & Zhu, Xuening, 2024. "Volatility dynamics of agricultural futures markets under uncertainties," Energy Economics, Elsevier, vol. 136(C).
    309. Matěj Liberda, 2017. "Mixed-frequency Drivers of Precious Metal Prices," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(6), pages 2007-2015.
    310. Chen, Zhenlong & Liu, Junjie & Hao, Xiaozhen, 2024. "Can asymmetry, long memory, and current return information improve crude oil volatility prediction? ——Evidence from ASHARV-MIDAS model," Finance Research Letters, Elsevier, vol. 64(C).
    311. Byron Botha & Geordie Reid & Tim Olds & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African GDP using a suite of statistical models," Working Papers 11001, South African Reserve Bank.
    312. Guerrero, Víctor & Islas C., Alejandro & Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío, 2014. "Mexico: Combining monthly inflation predictions from surveys," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    313. Wang, Ruina & Li, Jinfang, 2021. "The influence and predictive powers of mixed-frequency individual stock sentiment on stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    314. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    315. Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
    316. Cattivelli, Luca & Pirino, Davide, 2019. "A SHARP model of bid–ask spread forecasts," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1211-1225.
    317. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    318. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    319. Atin Aboutorabi & Ga'etan de Rassenfosse, 2024. "Nowcasting R&D Expenditures: A Machine Learning Approach," Papers 2407.11765, arXiv.org.
    320. Roberto Steri, 2015. "Collateral-Based Asset Pricing," 2015 Meeting Papers 293, Society for Economic Dynamics.
    321. Uğurlu-Yıldırım, Ecenur & Şendeniz-Yüncü, İlkay, 2021. "Additional factor in asset-pricing: Institutional ownership," Finance Research Letters, Elsevier, vol. 40(C).
    322. Massimiliano Marcellino & Andrea Renzetti & Tommaso Tornese, 2024. "Nowcasting distributions: a functional MIDAS model," Papers 2411.05629, arXiv.org.
    323. Paul Viefers, 2011. "Bayesian Inference for the Mixed-Frequency VAR Model," Discussion Papers of DIW Berlin 1172, DIW Berlin, German Institute for Economic Research.
    324. Angelos Kanas & Panagiotis D. Zervopoulos, 2020. "Systemic risk-shifting in U.S. commercial banking," Review of Quantitative Finance and Accounting, Springer, vol. 54(2), pages 517-539, February.
    325. Stefan Gebauer, 2017. "The Use of Financial Market Variables in Forecasting," DIW Roundup: Politik im Fokus 115, DIW Berlin, German Institute for Economic Research.
    326. Michael D. Boldin & Jonathan H. Wright, 2015. "Weather-adjusting employment data," Working Papers 15-5, Federal Reserve Bank of Philadelphia.
    327. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    328. Dirk Drechsel & Stefan Neuwirth, 2016. "Taming volatile high frequency data with long lag structure: An optimal filtering approach for forecasting," KOF Working papers 16-407, KOF Swiss Economic Institute, ETH Zurich.
    329. Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
    330. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
    331. Franses, Ph.H.B.F., 2016. "Yet another look at MIDAS regression," Econometric Institute Research Papers EI2016-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    332. Marc Francke & Alex Van De Minne, 2022. "Daily appraisal of commercial real estate a new mixed frequency approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(5), pages 1257-1281, September.
    333. Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
    334. Chi-Wei Su & Yuru Song & Hsu-Ling Chang & Weike Zhang & Meng Qin, 2023. "Could Cryptocurrency Policy Uncertainty Facilitate U.S. Carbon Neutrality?," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    335. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    336. Czado, Claudia & Ivanov, Eugen & Okhrin, Yarema, 2019. "Modelling temporal dependence of realized variances with vines," Econometrics and Statistics, Elsevier, vol. 12(C), pages 198-216.
    337. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    338. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
    339. Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    340. Yun-Yeong Kim, 2016. "Dynamic Analyses Using VAR Model with Mixed Frequency Data through Observable Representation," Korean Economic Review, Korean Economic Association, vol. 32, pages 41-75.
    341. Liu, Min & Lee, Chien-Chiang, 2022. "Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS," Resources Policy, Elsevier, vol. 76(C).
    342. Selma Toker & Nimet Özbay & Kristofer Månsson, 2022. "Mixed data sampling regression: Parameter selection of smoothed least squares estimator," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 718-751, July.
    343. Leippold, Markus & Yang, Hanlin, 2019. "Particle filtering, learning, and smoothing for mixed-frequency state-space models," Econometrics and Statistics, Elsevier, vol. 12(C), pages 25-41.
    344. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.

  16. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.

    Cited by:

    1. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016. "Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
    2. Cecilia Mancini & Vanessa Mattiussi & Roberto Reno', 2012. "Spot Volatility Estimation Using Delta Sequences," Working Papers - Mathematical Economics 2012-10, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    3. Henryk Gurgul & Roland Mestel & Robert Syrek, 2017. "MIDAS models in banking sector – systemic risk comparison," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 18(2), pages 165-181.
    4. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    5. Paulo M.M. Rodrigues & Antonio Rubia, 2010. "The Effects of Additive Outliers and Measurement Errors when Testing for Structural Breaks in Variance," Working Papers w201011, Banco de Portugal, Economics and Research Department.
    6. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Mobarek, Asma & Muradoglu, Gulnur & Mollah, Sabur & Hou, Ai Jun, 2016. "Determinants of time varying co-movements among international stock markets during crisis and non-crisis periods," Journal of Financial Stability, Elsevier, vol. 24(C), pages 1-11.
    8. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    9. Erie Febrian & Aldrin Herwany, 2009. "Liquidity Measurement Based on Bid-Ask Spread, Trading Frequency, and Liquidity Ratio: The Use of GARCH Model on Jakarta Stock Exchange (JSX)," Working Papers in Economics and Development Studies (WoPEDS) 200910, Department of Economics, Padjadjaran University, revised Sep 2009.
    10. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    11. Haipeng Xing & Hongsong Yuan & Sichen Zhou, 2017. "A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 44-60, May.
    12. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.

  17. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.

    Cited by:

    1. Kristensen, Dennis, 2004. "A semiparametric single-factor model of the term structure," LSE Research Online Documents on Economics 24741, London School of Economics and Political Science, LSE Library.
    2. Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CREATES Research Papers 2009-07, Department of Economics and Business Economics, Aarhus University.
    3. Thomas Busch, 2008. "Testing the martingale restriction for option implied densities," Review of Derivatives Research, Springer, vol. 11(1), pages 61-81, March.
    4. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    6. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2007. "Econometric Asset Pricing Modelling," Working Papers 2007-18, Center for Research in Economics and Statistics.
    7. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    8. Ming Yuan, 2009. "State price density estimation via nonparametric mixtures," Papers 0910.1430, arXiv.org.
    9. Andrea Pascucci & Paolo Foschi, 2005. "Calibration of the Hobson&Rogers model: empirical tests," Finance 0509020, University Library of Munich, Germany.
    10. Eva Ferreira & Mónica Gago & Angel León & Gonzalo Rubio, 2005. "An empirical comparison of the performance of alternative option pricing models," Investigaciones Economicas, Fundación SEPI, vol. 29(3), pages 483-523, September.
    11. Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
    12. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    15. Fousseni Chabi-Yo & René Garcia & Eric Renault, 2005. "State Dependence in Fundamentals and Preferences Explains Risk-Aversion Puzzle," Staff Working Papers 05-9, Bank of Canada.
    16. Vázquez, Miguel & Sánchez-Úbeda, Eugenio F. & Berzosa, Ana & Barquín, Julián, 2008. "Short-term evolution of forward curves and volatility in illiquid power market," MPRA Paper 8932, University Library of Munich, Germany, revised May 2008.
    17. Cyrus Ramezani & Yong Zeng, 2007. "Maximum likelihood estimation of the double exponential jump-diffusion process," Annals of Finance, Springer, vol. 3(4), pages 487-507, October.
    18. Kristensen, Dennis, 2004. "Estimation of partial differential equations with applications in finance," LSE Research Online Documents on Economics 24738, London School of Economics and Political Science, LSE Library.
    19. Nikolai Dokuchaev, 2011. "Option Pricing Via Maximization Over Uncertainty And Correction Of Volatility Smile," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 507-524.

  18. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.

    Cited by:

    1. Barassi, Marco & Horvath, Lajos & Zhao, Yuqian, 2018. "Change Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," MPRA Paper 87837, University Library of Munich, Germany.
    2. Patrick McGlenchy & Paul Kofman, 2004. "Structurally Sound Dynamic Index Futures Hedging," Econometric Society 2004 Australasian Meetings 80, Econometric Society.
    3. Leonidas Tsiaras, 2010. "Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns," CREATES Research Papers 2010-35, Department of Economics and Business Economics, Aarhus University.
    4. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.

  19. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.

    Cited by:

    1. Song, Zefang & Song, Xinyuan & Li, Yuan, 2023. "Bayesian Analysis of ARCH-M model with a dynamic latent variable," Econometrics and Statistics, Elsevier, vol. 28(C), pages 47-62.
    2. Antonia Lopez-Villavicencio & Valérie Mignon, 2016. "Exchange Rate Pass-through in Emerging Countries: Do the Inflation Environment, Monetary Policy Regime and Institutional Quality Matter?," Working Papers 2016-07, CEPII research center.
    3. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    4. Hui Guo & Robert F. Whitelaw, 2003. "Uncovering the Risk-Return Relation in the Stock Market," NBER Working Papers 9927, National Bureau of Economic Research, Inc.
    5. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    6. Escanciano, Juan Carlos & Pardo-Fernandez, Juan Carlos & Van Keilegom, Ingrid, 2013. "Semiparametric Estimation of Risk-return Relationships," LIDAM Discussion Papers ISBA 2013035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Wang, Wenzhao, 2020. "Institutional investor sentiment, beta, and stock returns," Finance Research Letters, Elsevier, vol. 37(C).
    8. Chotipong Charoensom, 2024. "An Estimation of Regime Switching Models with Nonlinear Endogenous Switching," PIER Discussion Papers 217, Puey Ungphakorn Institute for Economic Research.
    9. Cardak, Buly A. & Martin, Vance L., 2023. "Household willingness to take financial risk: Stockmarket movements and life‐cycle effects," Journal of Banking & Finance, Elsevier, vol. 149(C).
    10. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. González, Mariano & Nave, Juan & Rubio, Gonzalo, 2018. "Macroeconomic determinants of stock market betas," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 26-44.
    12. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Laurent E. Calvet & Adlai J. Fisher, 2005. "Multifrequency News and Stock Returns," NBER Working Papers 11441, National Bureau of Economic Research, Inc.
    14. Prabheesh, K.P. & Sasongko, Aryo & Indawan, Fiskara, 2023. "Did the policy responses influence credit and business cycle co-movement during the COVID-19 crisis? Evidence from Indonesia," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 243-255.
    15. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    16. Marianne Andries & Valentin Haddad, 2017. "Information Aversion," NBER Working Papers 23958, National Bureau of Economic Research, Inc.
    17. Yao, Jing & Yang, Yiwen, 2023. "Risk-return tradeoff and serial correlation in the Chinese stock market: A bailout-driven crash feedback hypothesis," Economic Modelling, Elsevier, vol. 129(C).
    18. Pástor, Luboš & Sinha, Meenakshi & Swaminathan, Bhaskaran, 2006. "Estimating the Intertemporal Risk-Return Tradeoff Using the Implied Cost of Capital," CEPR Discussion Papers 5462, C.E.P.R. Discussion Papers.
    19. Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
    20. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    21. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    22. Christensen, Bent Jesper & Dahl, Christian M. & Iglesias, Emma M., 2012. "Semiparametric inference in a GARCH-in-mean model," Journal of Econometrics, Elsevier, vol. 167(2), pages 458-472.
    23. C. Emre Alper & Salih Fendoglu & Burak Saltoglu, 2009. "MIDAS Volatility Forecast Performance Under Market Stress: Evidence from Emerging and Developed Stock Markets," Working Papers 2009/04, Bogazici University, Department of Economics.
    24. Li, Dandan & Ghoshray, Atanu & Morley, Bruce, 2012. "Measuring the risk premium in uncovered interest parity using the component GARCH-M model," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 167-176.
    25. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    26. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    27. John Cotter & Enrique Salvador, 2014. "The non-linear trade-off between return and risk: a regime-switching multi-factor framework," Working Papers 201414, Geary Institute, University College Dublin.
    28. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
    29. González-Sánchez, Mariano & Nave, Juan & Rubio, Gonzalo, 2020. "Effects of uncertainty and risk aversion on the exposure of investment-style factor returns to real activity," Research in International Business and Finance, Elsevier, vol. 53(C).
    30. Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019. "The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
    31. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    32. Jin, Xiaoye, 2017. "Time-varying return-volatility relation in international stock markets," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 157-173.
    33. Chiang, Thomas C. & Chen, Xiaoyu, 2016. "Stock returns and economic fundamentals in an emerging market: An empirical investigation of domestic and global market forces," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 107-120.
    34. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    35. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2017. "Economic Policy Uncertainty and Long-Run Stock Market Volatility and Correlation," CREATES Research Papers 2018-12, Department of Economics and Business Economics, Aarhus University.
    36. Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
    37. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    38. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    39. Yuming Li, 2017. "Risks and rewards for momentum and reversal portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 289-315, August.
    40. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    41. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," CEPR Discussion Papers 11307, C.E.P.R. Discussion Papers.
    42. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
    43. Angelos Kanas, 2013. "The risk-return relation and VIX: evidence from the S&P 500," Empirical Economics, Springer, vol. 44(3), pages 1291-1314, June.
    44. Talha Omer & Kristofer Månsson & Pär Sjölander & B. M. Golam Kibria, 2024. "Improved Breitung and Roling estimator for mixed-frequency models with application to forecasting inflation rates," Statistical Papers, Springer, vol. 65(5), pages 3303-3325, July.
    45. Marks, Joseph M. & Nam, Kiseok, 2018. "Intertemporal risk-return tradeoff in the short-run," Economics Letters, Elsevier, vol. 172(C), pages 81-84.
    46. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    47. Hui Guo & Robert Savickas, 2003. "Does idiosyncratic risk matter: another look," Working Papers 2003-025, Federal Reserve Bank of St. Louis.
    48. Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
    49. Hideyuki Takamizawa, 2015. "Predicting Interest Rate Volatility Using Information on the Yield Curve," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 347-386, September.
    50. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    51. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    52. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2012. "On the Macroeconomic Determinants of the Long-Term Oil-Stock Correlation," Working Papers 0525, University of Heidelberg, Department of Economics.
    53. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R., 2014. "Risk–return trade-off in the pacific basin equity markets," Emerging Markets Review, Elsevier, vol. 18(C), pages 123-140.
    54. Mark J. Jensen & John M. Maheu, 2014. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," Working Paper series 31_14, Rimini Centre for Economic Analysis.
    55. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Post-Print halshs-00460461, HAL.
    56. Emre Alper, C. & Fendoglu, Salih & Saltoglu, Burak, 2012. "MIDAS volatility forecast performance under market stress: Evidence from emerging stock markets," Economics Letters, Elsevier, vol. 117(2), pages 528-532.
    57. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    58. Ashby, M. & Linton, O. B., 2022. "Do Consumption-based Asset Pricing Models Explain Own-history Predictability in Stock Market Returns?," Cambridge Working Papers in Economics 2259, Faculty of Economics, University of Cambridge.
    59. Bandi, Federico M. & Bretscher, Lorenzo & Tamoni, Andrea, 2023. "Return predictability with endogenous growth," Journal of Financial Economics, Elsevier, vol. 150(3).
    60. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    61. Vozlyublennaia, Nadia & Meshcheryakov, Artem, 2014. "Dynamic correlation structure and security risk," Journal of Economics and Business, Elsevier, vol. 73(C), pages 48-64.
    62. Ernst Konrad, 2009. "The impact of monetary policy surprises on asset return volatility: the case of Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(2), pages 111-135, June.
    63. R. Sufana, 2013. "Leverage effects in a multiasset framework," Applied Financial Economics, Taylor & Francis Journals, vol. 23(9), pages 783-787, May.
    64. Maio, Paulo, 2016. "Cross-sectional return dispersion and the equity premium," Journal of Financial Markets, Elsevier, vol. 29(C), pages 87-109.
    65. Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
    66. Kiseok Nam & Joshua Krausz & Augustine C. Arize, 2014. "Revisiting the intertemporal risk-return relation: asymmetrical effect of unexpected volatility shocks," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2193-2203, December.
    67. Ekaterina Smetanina, 2017. "Real-Time GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 561-601.
    68. Wensheng Kang & Ronald A. Ratti & Kyung Hwan Yoon, 2014. "The Impact of Oil Price Shocks on the Stock Market Return and Volatility Relationship," CAMA Working Papers 2014-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    69. Juan M. Londono & Nancy R. Xu, 2019. "Variance Risk Premium Components and International Stock Return Predictability," International Finance Discussion Papers 1247, Board of Governors of the Federal Reserve System (U.S.).
    70. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
    71. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    72. Hui Guo & Jason Higbee & Christopher J. Neely, 2006. "Foreign exchange volatility is priced in equities," Working Papers 2004-029, Federal Reserve Bank of St. Louis.
    73. Guillaume Bagnarosa & Mark Cummins & Michael Dowling & Fearghal Kearney, 2022. "Commodity risk in European dairy firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 151-181.
    74. Getachew, Yoseph Yilma, 2016. "Credit constraints, growth and inequality dynamics," Economic Modelling, Elsevier, vol. 54(C), pages 364-376.
    75. Hunjra, Ahmed Imran & Azam, Muhammad & Niazi, Ghulam Shabbir Khan & Butt, Babar Zaheer & Rehman, Kashif-Ur- & Azam, Rauf i, 2010. "Risk and return relationship in stock market and commodity prices: a comprehensive study of Pakistani markets," MPRA Paper 40662, University Library of Munich, Germany.
    76. Guo, Hui & Savickas, Robert, 2006. "Idiosyncratic Volatility, Stock Market Volatility, and Expected Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 43-56, January.
    77. Ghysels, Eric & Guérin, Pierre & Marcellino, Massimiliano, 2014. "Regime switches in the risk–return trade-off," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 118-138.
    78. Jyri Kinnunen & Minna Martikainen, 2017. "Dynamic Autocorrelation and International Portfolio Allocation," Multinational Finance Journal, Multinational Finance Journal, vol. 21(1), pages 21-48, March.
    79. Li, Junye & Sarno, Lucio & Zinna, Gabriele, 2024. "Risks and risk premia in the US Treasury market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    80. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2004. "A Jackknife Estimator for Tracking Error Variance of Optimal Portfolios Constructed Using Estimated Inputs1," NBER Working Papers 10447, National Bureau of Economic Research, Inc.
    81. Abakah, Emmanuel Joel Aikins & Tiwari, Aviral Kumar & Alagidede, Imhotep Paul & Gil-Alana, Luis Alberiko, 2022. "Re-examination of risk-return dynamics in international equity markets and the role of policy uncertainty, geopolitical risk and VIX: Evidence using Markov-switching copulas," Finance Research Letters, Elsevier, vol. 47(PA).
    82. Kannyiri Thadious Banyen & Joseph Kofi Nkuah, 2015. "Limited Stock Market Participation in Ghana: A Behavioral Explanation," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(6), pages 286-305, June.
    83. Kinnunen, Jyri, 2014. "Risk-return trade-off and serial correlation: Do volume and volatility matter?," Journal of Financial Markets, Elsevier, vol. 20(C), pages 1-19.
    84. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    85. Axel Groß-Klußmann, 2024. "Learning deep news sentiment representations for macro-finance," Digital Finance, Springer, vol. 6(3), pages 341-377, September.
    86. Sakemoto, Ryuta, 2023. "The long-run risk premium in the intertemporal CAPM: International evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    87. Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
    88. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    89. Ghysels, Eric & Ball, Ryan & Zhou, Huan, 2014. "Can we Automate Earnings Forecasts and Beat Analysts?," CEPR Discussion Papers 10186, C.E.P.R. Discussion Papers.
    90. Haibin Xie & Shouyang Wang, 2015. "Risk-return trade-off, information diffusion, and U.S. stock market predictability," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-20, December.
    91. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
    92. León Valle Ángel & Nave Pineda Juan & Rubio Irigoyen Gonzalo, 2005. "The Relationship between Risk and Expected Return in Europe," Working Papers 201025, Fundacion BBVA / BBVA Foundation.
    93. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    94. Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
    95. Jim Hanly, 2017. "Managing Energy Price Risk using Futures Contracts: A Comparative Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    96. Bali, Turan G. & Cakici, Nusret & Chabi-Yo, Fousseni, 2015. "A new approach to measuring riskiness in the equity market: Implications for the risk premium," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 101-117.
    97. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    98. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
    99. Gui, Zhengqing & Huang, Yangguang & Zhao, Xiaojian, 2021. "Whom to educate? Financial literacy and investor awareness," China Economic Review, Elsevier, vol. 67(C).
    100. Amendola, Alessandra & Candila, Vincenzo & Scognamillo, Antonio, 2015. "On the influence of the U.S. monetary policy on the crude oil price volatility," 2015 Fourth Congress, June 11-12, 2015, Ancona, Italy 207860, Italian Association of Agricultural and Applied Economics (AIEAA).
    101. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    102. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    103. Cho, Sungjun, 2014. "What drives stochastic risk aversion?," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 44-63.
    104. Eva Ferreira & Mónica Gago & Angel León & Gonzalo Rubio, 2005. "An empirical comparison of the performance of alternative option pricing models," Investigaciones Economicas, Fundación SEPI, vol. 29(3), pages 483-523, September.
    105. Ang, Andrew & Liu, Jun, 2007. "Risk, return, and dividends," Journal of Financial Economics, Elsevier, vol. 85(1), pages 1-38, July.
    106. Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2015. "Fundamentals and the Volatility of Real Estate Prices in China: A Sequential Modelling Strategy," Working Papers 222015, Hong Kong Institute for Monetary Research.
    107. Deng, Yongheng & Girardin, Eric & Joyeux, Roselyne, 2018. "Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy," China Economic Review, Elsevier, vol. 48(C), pages 205-222.
    108. Elena Andreou, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," University of Cyprus Working Papers in Economics 03-2016, University of Cyprus Department of Economics.
    109. Zhihui Lv & Amanda M. Y. Chu & Wing Keung Wong & Thomas C. Chiang, 2021. "The maximum-return-and-minimum-volatility effect: evidence from choosing risky and riskless assets to form a portfolio," Risk Management, Palgrave Macmillan, vol. 23(1), pages 97-122, June.
    110. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    111. Marcellino, Massimiliano & Foroni, Claudia & Casarin, Roberto & Ravazzolo, Francesco, 2017. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," CEPR Discussion Papers 12339, C.E.P.R. Discussion Papers.
    112. Valadkhani, Abbas & Smyth, Russell, 2018. "Asymmetric responses in the timing, and magnitude, of changes in Australian monthly petrol prices to daily oil price changes," Energy Economics, Elsevier, vol. 69(C), pages 89-100.
    113. Ghosh, Anisha & Linton, Oliver, 2007. "Consistent estimation of the risk-return tradeoff in the presence of measurement error," LSE Research Online Documents on Economics 24506, London School of Economics and Political Science, LSE Library.
    114. Felix Holzmeister & Jürgen Huber & Michael Kirchler & Florian Lindner & Utz Weitzel & Stefan Zeisberger, 2019. "What Drives Risk Perception? A Global Survey withFinancial Professionals and Lay People," Working Papers 2019-05, Faculty of Economics and Statistics, Universität Innsbruck.
    115. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    116. Pollet, Joshua M. & Wilson, Mungo, 2010. "Average correlation and stock market returns," Journal of Financial Economics, Elsevier, vol. 96(3), pages 364-380, June.
    117. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    118. Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
    119. Kumari Ranjita & Kumar Nishant, 2020. "Ownership Structure and the Risk: Analysis of Indian Firms," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 8(1), pages 39-52, October.
    120. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "An information diffusion-based model of oil futures price," Energy Economics, Elsevier, vol. 36(C), pages 518-525.
    121. Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
    122. Ali F. Darrat & Bin Li & Omar Benkato, 2011. "The Relationship between Volatility and Expected Returns: Some Evidence for Australia," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 10(1), pages 27-43, April.
    123. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    124. Hui Guo & Robert Savickas, 2006. "The relation between time-series and cross-sectional effects of idiosyncratic variance on stock returns in G7 countries," Working Papers 2006-036, Federal Reserve Bank of St. Louis.
    125. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    126. Tim Bollerslev & Hao Zhou, 2003. "Volatility puzzles: a unified framework for gauging return-volatility regressions," Finance and Economics Discussion Series 2003-40, Board of Governors of the Federal Reserve System (U.S.).
    127. Xingchen Lv & Jun Meng & Qiufeng Wu, 2022. "Dynamic Influence of Network Public Opinions on Price Fluctuation of Small Agricultural Products Based on NLP-TVP-VAR Model—Taking Garlic as an Example," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    128. Cotter, John & Hanly, Jim, 2010. "Time-varying risk aversion: An application to energy hedging," Energy Economics, Elsevier, vol. 32(2), pages 432-441, March.
    129. Dave Berger & H. J. Turtle, 2009. "Time Variability In Market Risk Aversion," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(3), pages 285-307, September.
    130. Söhnke M. Bartram & Gregory Brown & René M. Stulz, 2017. "Why Does Idiosyncratic Risk Increase with Market Risk?," CESifo Working Paper Series 6560, CESifo.
    131. Jan Schulz & Mishael Milaković, 2023. "How Wealthy are the Rich?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(1), pages 100-123, March.
    132. Ma, Chaoqun & Mi, Xianhua & Cai, Zongwu, 2020. "Nonlinear and time-varying risk premia," China Economic Review, Elsevier, vol. 62(C).
    133. Dang, Dong Quang & Wu, Weiou & Korkos, Ioannis, 2024. "Stock market and inequality distributions – Evidence from the BRICS and G7 countries," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1172-1190.
    134. Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
    135. Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading Newspapers," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205161, HAL.
    136. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    137. Andreou, Christoforos K. & Lambertides, Neophytos & Savvides, Andreas, 2020. "Sovereign credit risk and global equity fund returns in emerging markets," Journal of International Money and Finance, Elsevier, vol. 107(C).
    138. Qiu, Yue, 2020. "Forecasting the Consumer Confidence Index with tree-based MIDAS regressions," Economic Modelling, Elsevier, vol. 91(C), pages 247-256.
    139. Kanas, Angelos, 2012. "Modelling the risk–return relation for the S&P 100: The role of VIX," Economic Modelling, Elsevier, vol. 29(3), pages 795-809.
    140. Rachidi Kotchoni, 2018. "Detecting and Measuring Nonlinearity," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    141. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    142. Wu, Shue-Jen & Lee, Wei-Ming, 2015. "Intertemporal risk–return relationships in bull and bear markets," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 308-325.
    143. Hui Guo & Robert Savickas, 2006. "Aggregate idiosyncratic volatility in G7 countries," Working Papers 2004-027, Federal Reserve Bank of St. Louis.
    144. Lanne, Markku & Luoto, Jani, 2007. "Robustness of the Risk-Return Relationship in the U.S. Stock Market," MPRA Paper 3879, University Library of Munich, Germany.
    145. Xingchen Lv & Weijun Lin & Jun Meng & Linan Mo, 2024. "Spillover Effect of Network Public Opinion on Market Prices of Small-Scale Agricultural Products," Mathematics, MDPI, vol. 12(4), pages 1-17, February.
    146. Matthew Spiegel & Xiaotong Wang, 2005. "Cross-sectional Variation in Stock Returns: Liquidity and Idiosyncratic Risk," Yale School of Management Working Papers amz2540, Yale School of Management, revised 01 Mar 2006.
    147. Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
    148. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    149. Thuy Thi Thu Truong & Jungmu Kim, 2019. "Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    150. Emiliano Magrini & Ayca Donmez, 2013. "Agricultural Commodity Price Volatility and Its Macroeconomic Determinants: A GARCH-MIDAS Approach," JRC Research Reports JRC84138, Joint Research Centre.
    151. Müller, Gernot & Durand, Robert B. & Maller, Ross A., 2011. "The risk-return tradeoff: A COGARCH analysis of Merton's hypothesis," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 306-320, March.
    152. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2016. "Which parametric model for conditional skewness?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(13), pages 1237-1271, October.
    153. Malamud, Semyon & Vilkov, Grigory, 2018. "Non-myopic betas," Journal of Financial Economics, Elsevier, vol. 129(2), pages 357-381.
    154. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou & Weining Wang, 2017. "Long- and Short-Run Components of Factor Betas: Implications for Equity Pricing," CREATES Research Papers 2017-34, Department of Economics and Business Economics, Aarhus University.
    155. John Cotter & Jim Hanly, 2014. "Performance of Utility Based Hedges," Working Papers 201404, Geary Institute, University College Dublin.
    156. Maake, Tebogo & Bonga-Bonga, Lumengo, 2019. "The relationship between carry trade and asset markets in South Africa," MPRA Paper 96667, University Library of Munich, Germany.
    157. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
    158. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    159. Jianjian Jin, 2013. "Jump-Diffusion Long-Run Risks Models, Variance Risk Premium and Volatility Dynamics," Staff Working Papers 13-12, Bank of Canada.
    160. Jeong‐Hoon Kim & Jungwoo Lee & Song‐Ping Zhu & Seok‐Hyon Yu, 2014. "A multiscale correction to the Black–Scholes formula," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(6), pages 753-765, November.
    161. Eric Girardin & Roselyne Joyeux, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Post-Print hal-01499615, HAL.
    162. Jennie Bai & Turan G. Bali & Quan Wen, 2019. "Is There a Risk-Return Tradeoff in the Corporate Bond Market? Time-Series and Cross-Sectional Evidence," NBER Working Papers 25995, National Bureau of Economic Research, Inc.
    163. Mohammed Sawkat Hossain & Md Hamid Uddin & Sarkar Humayun Kabir, 2021. "Sukuk and Bond Puzzle: An Analysis with Characteristics Matched Portfolios," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(13), pages 3792-3817, October.
    164. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    165. Jia, Yun & Yang, Chunpeng, 2017. "Disagreement and the risk-return relation," Economic Modelling, Elsevier, vol. 64(C), pages 97-104.
    166. Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
    167. Ioannis Kasparis & Peter C.B. Phillips, 2009. "Dynamic Misspecification in Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 1700, Cowles Foundation for Research in Economics, Yale University.
    168. Hui Guo & Christopher J. Neely, 2006. "Investigating the intertemporal risk-return relation in international stock markets with the component GARCH model," Working Papers 2006-006, Federal Reserve Bank of St. Louis.
    169. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    170. Chari, Murali D.R. & David, Parthiban & Duru, Augustine & Zhao, Yijiang, 2019. "Bowman's risk-return paradox: An agency theory perspective," Journal of Business Research, Elsevier, vol. 95(C), pages 357-375.
    171. Kunst, Robert M. & Franses, Philip Hans, 2010. "Asymmetric Time Aggregation and its Potential Benefits for Forecasting Annual Data," Economics Series 252, Institute for Advanced Studies.
    172. Jiranyakul, Komain, 2011. "On the Risk-Return Tradeoff in the Stock Exchange of Thailand: New Evidence," MPRA Paper 45583, University Library of Munich, Germany.
    173. Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
    174. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.
    175. Leila Hedhili Zaier & Khaled Mokni & Ahdi Noomen Ajmi, 2024. "Causality relationships between climate policy uncertainty, renewable energy stocks, and oil prices: a mixed-frequency causality analysis," Future Business Journal, Springer, vol. 10(1), pages 1-11, December.
    176. Adam Bahelka & Harmen de Weerd, 2024. "Comparative analysis of Mixed-Data Sampling (MIDAS) model compared to Lag-Llama model for inflation nowcasting," Papers 2407.08510, arXiv.org.
    177. Ernest Gyapong & Daniel Gyimah & Ammad Ahmed, 2021. "Religiosity, borrower gender and loan losses in microfinance institutions: a global evidence," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 657-692, August.
    178. Benoît Sévi, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Post-Print hal-01500860, HAL.
    179. Esben Hedegaard & Robert J. Hodrick, 2014. "Estimating the Risk-Return Trade-off with Overlapping Data Inference," NBER Working Papers 19969, National Bureau of Economic Research, Inc.
    180. Byrne, Joseph P. & Sakemoto, Ryuta, 2021. "The conditional volatility premium on currency portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    181. Strohsal, Till & Weber, Enzo, 2011. "Mean-variance cointegration and the expectations hypothesis," SFB 649 Discussion Papers 2011-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    182. Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
    183. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    184. Kanas, Angelos & Molyneux, Philip, 2020. "Do measures of systemic risk predict U.S. corporate bond default rates?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    185. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    186. Salamaliki, Paraskevi K. & Venetis, Ioannis A., 2013. "Energy consumption and real GDP in G-7: Multi-horizon causality testing in the presence of capital stock," Energy Economics, Elsevier, vol. 39(C), pages 108-121.
    187. Martin Ewen, 2018. "Where is the Risk Reward? The Impact of Volatility-Based Fund Classification on Performance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    188. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    189. Joseph, Byrne & Sakemoto, Ryuta, 2020. "The Conditional Risk and Return Trade-Off on Currency Portfolios," MPRA Paper 99497, University Library of Munich, Germany.
    190. Hui Guo & Zijun Wang & Jian Yang, 2006. "Does aggregate relative risk aversion change countercyclically over time? evidence from the stock market," Working Papers 2006-047, Federal Reserve Bank of St. Louis.
    191. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    192. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    193. Wu, Jie & Zhao, Ruizeng & Sun, Jiasen & Zhou, Xuewei, 2023. "Impact of geopolitical risks on oil price fluctuations: Based on GARCH-MIDAS model," Resources Policy, Elsevier, vol. 85(PB).
    194. He, Zhifang, 2022. "Asymmetric impacts of individual investor sentiment on the time-varying risk-return relation in stock market," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 177-194.
    195. Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
    196. Simlai, Prodosh, 2014. "Persistence of ex-ante volatility and the cross-section of stock returns," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 253-261.
    197. Viceira, Luis M., 2012. "Bond risk, bond return volatility, and the term structure of interest rates," International Journal of Forecasting, Elsevier, vol. 28(1), pages 97-117.
    198. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    199. Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
    200. Lee Jihyun & Kim Tong S & Lee Hoe Kyung, 2010. "Return-Volatility Relationship in High Frequency Data: Multiscale Horizon Dependency," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-43, December.
    201. Cathy Yi†Hsuan Chen & Thomas C. Chiang, 2016. "Empirical Analysis of the Intertemporal Relationship between Downside Risk and Expected Returns: Evidence from Time†varying Transition Probability Models," European Financial Management, European Financial Management Association, vol. 22(5), pages 749-796, November.
    202. Yin, Libo & Zhou, Yimin, 2016. "What drives long-term oil market volatility? Fundamentals versus Speculation," Economics Discussion Papers 2016-2, Kiel Institute for the World Economy (IfW Kiel).
    203. Cenedese, Gino & Sarno, Lucio & Tsiakas, Ilias, 2014. "Foreign exchange risk and the predictability of carry trade returns," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 302-313.
    204. Turan Bali & Kamil Yilmaz, 2009. "The Intertemporal Relation between Expected Return and Risk on Currency," Koç University-TUSIAD Economic Research Forum Working Papers 0909, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.
    205. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    206. Liu, Xiaochun, 2017. "Can macroeconomic dynamics explain the time variation of risk–return trade-offs in the U.S. financial market?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 275-293.
    207. Kim, Jun Sik & Ryu, Doojin & Seo, Sung Won, 2014. "Investor sentiment and return predictability of disagreement," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 166-178.
    208. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    209. Belén Nieto & Alfonso Novales Cinca & Gonzalo Rubio, 2014. "Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns," Documentos de Trabajo del ICAE 2014-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    210. Qiu, Rui & Liu, Jing & Li, Yan, 2023. "Long-term adjusted volatility: Powerful capability in forecasting stock market returns," International Review of Financial Analysis, Elsevier, vol. 86(C).
    211. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    212. Pan, Beier, 2023. "The asymmetric dynamics of stock–bond liquidity correlation in China: The role of macro-financial determinants," Economic Modelling, Elsevier, vol. 124(C).
    213. Cotter, John & Hanly, Jim, 2012. "A utility based approach to energy hedging," Energy Economics, Elsevier, vol. 34(3), pages 817-827.
    214. Abdul Rashid & Saba Kausar, 2019. "Testing the Monthly Calendar Anomaly of Stock Returns in Pakistan: A Stochastic Dominance Approach," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 58(1), pages 83-104.
    215. Aslanidis, Nektarios & Christiansen, Charlotte & Savva, Christos S., 2016. "Risk-return trade-off for European stock markets," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 84-103.
    216. Jahan-Parvar, Mohammad R. & Mohammadi, Hassan, 2013. "Risk and return in the Tehran stock exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 238-256.
    217. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    218. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
    219. Jyri Kinnunen & Minna Martikainen, 2017. "Expected Returns and Idiosyncratic Risk: Industry-Level Evidence from Russia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(11), pages 2528-2544, November.
    220. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    221. Jang, Jeewon & Kang, Jangkoo, 2017. "An intertemporal CAPM with higher-order moments," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 314-337.
    222. Pentti Saikkonen & Markku Lanne, 2004. "A Skewed GARCH-in-Mean Model: An Application to U.S. Stock Returns," Econometric Society 2004 North American Summer Meetings 469, Econometric Society.
    223. Lee, Kiryoung & Choi, Eunseon & Kim, Minki, 2023. "Twitter-based Chinese economic policy uncertainty," Finance Research Letters, Elsevier, vol. 53(C).
    224. Londono Yarce, J.M., 2011. "Essays on asset pricing," Other publications TiSEM 744a2ac5-7ada-4fa8-a7aa-e, Tilburg University, School of Economics and Management.
    225. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2005. "Testing the forecasting performace of IBEX 35 option implied risk neutral densities," Working Papers 0504, Banco de España.
    226. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    227. Likai Chen & Ekaterina Smetanina & Wei Biao Wu, 2022. "Estimation of nonstationary nonparametric regression model with multiplicative structure [Income and wealth distribution in macroeconomics: A continuous-time approach]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 176-214.
    228. Octavio Portolano Machado & Adriana Bruscato Bortoluzzo & Sérgio Ricardo Martins & Antonio Zoratto Sanvicente, 2013. "Inter-temporal CAPM: an empirical test with Brazilian market data," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(2), pages 149-180.
    229. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Post-Print halshs-04344131, HAL.
    230. Herold, Michael & Kanz, Andreas & Muck, Matthias, 2021. "Do opinion polls move stock prices? Evidence from the US presidential election in 2016," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 665-690.
    231. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    232. Kinnunen, Jyri, 2017. "Dynamic cross-autocorrelation in stock returns," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 162-173.
    233. Hui Guo & Robert Savickas & Zijun Wang & Jian Yang, 2006. "Is value premium a proxy for time-varying investment opportunities: some time series evidence," Working Papers 2005-026, Federal Reserve Bank of St. Louis.
    234. Kim, Eung-Bin & Byun, Suk-Joon, 2021. "Risk, ambiguity, and equity premium: International evidence," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 321-335.
    235. Wang, Zijun & Khan, M. Moosa, 2017. "Market states and the risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 314-327.
    236. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    237. Ghaderi, Mohammad & Kilic, Mete & Seo, Sang Byung, 2024. "Why do rational investors like variance at the peak of a crisis? A learning-based explanation," Journal of Monetary Economics, Elsevier, vol. 142(C).
    238. Kiseok Nam & Shahriar Khaksari & Moonsoo Kang, 2017. "Trend in aggregate idiosyncratic volatility," Review of Financial Economics, John Wiley & Sons, vol. 35(1), pages 11-28, November.
    239. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    240. Bhattacharya, Abhi & Misra, Shekhar & Sardashti, Hanieh, 2019. "Strategic orientation and firm risk," International Journal of Research in Marketing, Elsevier, vol. 36(4), pages 509-527.
    241. Cedric Okou & Eric Jacquier, 2014. "Horizon Effect in the Term Structure of Long-Run Risk-Return Trade-Offs," CIRANO Working Papers 2014s-36, CIRANO.
    242. Tariq Aziz & Valeed Ahmad Ansari, 2017. "Idiosyncratic volatility and stock returns: Indian evidence," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1420998-142, January.
    243. Andreou, Elena & Kasparis, Ioannis & Phillips, Peter C. B., 2013. "Nonparametric Predictive Regression," CEPR Discussion Papers 9570, C.E.P.R. Discussion Papers.
    244. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    245. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    246. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    247. Tobias Adrian & Joshua V. Rosenberg, 2006. "Stock returns and volatility: pricing the short-run and long-run components of market risk," Staff Reports 254, Federal Reserve Bank of New York.
    248. Wang, Jianxin & Yang, Minxian, 2013. "On the risk return relationship," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 132-141.
    249. Davide Pettenuzzo & Rossen Valkanov & Allan Timmermann, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," Working Papers 76, Brandeis University, Department of Economics and International Business School.
    250. Paul Sanchez & Robert J. Pidduck & Duygu Phillips & Joshua J. Daspit & Daniel T. Holt, 2024. "From modesty to market: shareholder reactions to humility rhetoric in family and nonfamily firms under media scrutiny," Small Business Economics, Springer, vol. 63(2), pages 755-780, August.
    251. Miguel A. Ferreira & Pedro Santa-Clara, 2008. "Forecasting Stock Market Returns: The Sum of the Parts is More than the Whole," NBER Working Papers 14571, National Bureau of Economic Research, Inc.
    252. Kenan Qiao & Haibin Xie, 2024. "Time‐varying risk preference and equity risk premium forecasting: The role of the disposition effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2659-2674, November.
    253. Chang, Kuang-Liang, 2016. "Does the return-state-varying relationship between risk and return matter in modeling the time series process of stock return?," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 72-87.
    254. Masud Alam, 2024. "Volatility in U.S. Housing Sector and the REIT Equity Return," The Journal of Real Estate Finance and Economics, Springer, vol. 69(3), pages 505-544, October.
    255. He, Zhongzhi (Lawrence) & Zhu, Jie & Zhu, Xiaoneng, 2015. "Multi-factor volatility and stock returns," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 132-149.
    256. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    257. Wang, Wenzhao, 2021. "The mean–variance relation: A 24-hour story," Economics Letters, Elsevier, vol. 208(C).
    258. Gao, Wang & Wei, Jiajia & Zhang, Hongwei & Zhang, Haizhen, 2024. "Does climate policy uncertainty exacerbate extreme risk spillovers between green economy and energy metals?," Resources Policy, Elsevier, vol. 91(C).
    259. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    260. Frazier, David T. & Liu, Xiaochun, 2016. "A new approach to risk-return trade-off dynamics via decomposition," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 43-55.
    261. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    262. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    263. Fung, Derrick W.H. & Lee, Wing Yan & Yang, Charles C. & Yeh, Jason J.H., 2024. "Risk taking, performance, and resilience to the COVID-19 pandemic: Evidence from public property-casualty insurers," International Review of Financial Analysis, Elsevier, vol. 91(C).
    264. Yang, Jianlei & Yang, Chunpeng, 2021. "The impact of mixed-frequency geopolitical risk on stock market returns," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 226-240.
    265. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    266. Liu, Jingzhen, 2019. "Impacts of lagged returns on the risk-return relationship of Chinese aggregate stock market: Evidence from different data frequencies," Research in International Business and Finance, Elsevier, vol. 48(C), pages 243-257.
    267. Miralles-Marcelo, José Luis & Miralles-Quirós, María del Mar & Miralles-Quirós, José Luis, 2012. "Asset pricing with idiosyncratic risk: The Spanish case," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 261-271.
    268. Júlio Lobão, 2024. "The Influence of Gender on Individuals’ Ability to Predict Their Own Risk Tolerance: Evidence from a European Country," Administrative Sciences, MDPI, vol. 14(3), pages 1-16, March.
    269. Anthony W. Lynch & Jessica A. Wachter, 2008. "Using Samples of Unequal Length in Generalized Method of Moments Estimation," NBER Working Papers 14411, National Bureau of Economic Research, Inc.
    270. Dimitrios Koutmos, 2015. "Is there a Positive Risk†Return Tradeoff? A Forward†Looking Approach to Measuring the Equity Premium," European Financial Management, European Financial Management Association, vol. 21(5), pages 974-1013, November.
    271. Hao Liu & Shihan Shen & Tianyi Wang & Zhuo Huang, 2016. "Revisiting the risk-return relation in the Chinese stock market: Decomposition of risk premium and volatility feedback effect," China Economic Journal, Taylor & Francis Journals, vol. 9(2), pages 140-153, May.
    272. Shanken, Jay & Tamayo, Ane, 2012. "Payout yield, risk, and mispricing: A Bayesian analysis," Journal of Financial Economics, Elsevier, vol. 105(1), pages 131-152.
    273. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    274. Licheng Sun & Liang Meng & Mohammad Najand, 2017. "The Role of U.S. Market on International Risk-Return Tradeoff Relations," The Financial Review, Eastern Finance Association, vol. 52(3), pages 499-526, August.
    275. Xianning WANG & Jingrong DONG & Zhi XIAO & Guanjie HE, 2019. "A novel spatial mixed frequency forecasting model with application to Chinese regional GDP," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 54-77, June.
    276. Eric Jacquier & Cedric Okou, 2013. "Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships," CIRANO Working Papers 2013s-14, CIRANO.
    277. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    278. Mili, Mehdi, 2019. "The impact of tradeoff between risk and return on mean reversion in sovereign CDS markets," Research in International Business and Finance, Elsevier, vol. 48(C), pages 187-200.
    279. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    280. Gregory Connor & Anita Suurlaht, 2012. "Dynamic Stock Market Covariances in the Eurozone," Economics Department Working Paper Series n222-12.pdf, Department of Economics, National University of Ireland - Maynooth.
    281. Hossein Asgharian & Charlotte Christiansen & Rangan Gupta & Ai Jun Hou, 2016. "Effects of Economic Policy Uncertainty Shocks on the Long-Run US-UK Stock Market Correlation," CREATES Research Papers 2016-29, Department of Economics and Business Economics, Aarhus University.
    282. Vít Pošta & Zdeněk Pikhart, 2015. "Financial Risk and Real Variables: Evidence Based on a SVAR Analysis of the Czech Economy," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(5), pages 516-537.
    283. Jiang, Xiaoquan & Lee, Bong-Soo, 2014. "The intertemporal risk-return relation: A bivariate model approach," Journal of Financial Markets, Elsevier, vol. 18(C), pages 158-181.
    284. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
    285. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    286. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    287. Boguth, Oliver & Carlson, Murray & Fisher, Adlai & Simutin, Mikhail, 2011. "Conditional risk and performance evaluation: Volatility timing, overconditioning, and new estimates of momentum alphas," Journal of Financial Economics, Elsevier, vol. 102(2), pages 363-389.
    288. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    289. Bonino-Gayoso, Nicolás & García-Hiernaux, Alfredo, 2019. "TF-MIDAS: a new mixed-frequency model to forecast macroeconomic variables," MPRA Paper 93366, University Library of Munich, Germany.
    290. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2007. "Valuation in US Commercial Real Estate," European Financial Management, European Financial Management Association, vol. 13(3), pages 472-497, June.
    291. Okou, Cédric & Jacquier, Éric, 2016. "Horizon effect in the term structure of long-run risk-return trade-offs," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 445-466.
    292. Choe, Kwang-il & Choi, Pilsun & Nam, Kiseok & Vahid, Farshid, 2012. "Testing financial contagion on heteroskedastic asset returns in time-varying conditional correlation," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 271-291.
    293. Koutmos, Gregory & Knif, Johan & Philippatos, George C., 2008. "Modeling common volatility characteristics and dynamic risk premia in European equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(3), pages 567-578, August.
    294. Freitag L., 2014. "Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis," Research Memorandum 038, Maastricht University, Graduate School of Business and Economics (GSBE).
    295. Wang, Wenzhao, 2018. "Investor sentiment and the mean-variance relationship: European evidence," Research in International Business and Finance, Elsevier, vol. 46(C), pages 227-239.
    296. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun & Wang, Weining, 2021. "Long- and short-run components of factor betas: Implications for stock pricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    297. Neaime, Simon, 2012. "The global financial crisis, financial linkages and correlations in returns and volatilities in emerging MENA stock markets," Emerging Markets Review, Elsevier, vol. 13(3), pages 268-282.
    298. Manh Cuong Nguyen & Viet Anh Dang & Tri Tri Nguyen, 2023. "The transfer of risk taking along the supply chain," Review of Quantitative Finance and Accounting, Springer, vol. 61(4), pages 1341-1378, November.
    299. Jin, Xing & Wang, Leping & Yu, Jun, 2007. "Temporal aggregation and risk-return relation," Finance Research Letters, Elsevier, vol. 4(2), pages 104-115, June.
    300. Khoo, Joye & Cheung, Adrian (Wai Kong), 2021. "Does geopolitical uncertainty affect corporate financing? Evidence from MIDAS regression," Global Finance Journal, Elsevier, vol. 47(C).
    301. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2018. "Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 21-32.
    302. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    303. Jiang, Cuixia & Li, Yuqian & Xu, Qifa & Liu, Yezheng, 2021. "Measuring risk spillovers from multiple developed stock markets to China: A vine-copula-GARCH-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 386-398.
    304. Lindblad, Annika, 2017. "Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility," MPRA Paper 80266, University Library of Munich, Germany.
    305. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.
    306. Jonathan Readshaw & Stefano Giani, 2020. "Using Company Specific Headlines and Convolutional Neural Networks to Predict Stock Fluctuations," Papers 2006.12426, arXiv.org.
    307. Til Schuermann & Kevin J. Stiroh, 2006. "Visible and hidden risk factors for banks," Staff Reports 252, Federal Reserve Bank of New York.
    308. Hui Guo & Robert Savickas, 2006. "Idiosyncratic volatility, economic fundamentals, and foreign exchange rates," Working Papers 2005-025, Federal Reserve Bank of St. Louis.
    309. Chelikani, Surya & Marks, Joseph M. & Nam, Kiseok, 2024. "State-dependent intertemporal risk-return tradeoff: Further evidence," Journal of Economics and Business, Elsevier, vol. 130(C).
    310. Wang, Wenzhao, 2018. "The mean–variance relation and the role of institutional investor sentiment," Economics Letters, Elsevier, vol. 168(C), pages 61-64.
    311. Baele, Lieven & Londono, Juan M., 2013. "Understanding industry betas," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 30-51.
    312. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.
    313. Ederington, Louis H. & Guan, Wei, 2010. "How asymmetric is U.S. stock market volatility?," Journal of Financial Markets, Elsevier, vol. 13(2), pages 225-248, May.
    314. Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
    315. Brennan, M.J. & Taylor, Alex P., 2023. "Expected returns and risk in the stock market," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 276-300.
    316. DasGupta, Ranjan & Deb, Soumya G., 2022. "Role of corporate governance in moderating the risk-return paradox: Cross country evidence," Journal of Contemporary Accounting and Economics, Elsevier, vol. 18(2).
    317. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    318. Aghamolla, Cyrus & An, Byeong-Je, 2021. "Voluntary disclosure with evolving news," Journal of Financial Economics, Elsevier, vol. 140(1), pages 21-53.
    319. Cláudia Duarte, 2016. "A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data," Working Papers w201601, Banco de Portugal, Economics and Research Department.
    320. Semih Emre Çekin & Victor J. Valcarcel, 2020. "Inflation volatility and inflation in the wake of the great recession," Empirical Economics, Springer, vol. 59(4), pages 1997-2015, October.
    321. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
    322. Apergis, Nicholas, 2015. "Newswire messages and sovereign credit ratings: Evidence from European countries under austerity reform programmes," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 54-62.
    323. Salvador, Enrique & Floros, Christos & Arago, Vicent, 2014. "Re-examining the risk–return relationship in Europe: Linear or non-linear trade-off?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 60-77.
    324. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
    325. Jiawen Xu & Yixuan Li & Kai Liu & Tao Chen, 2023. "Portfolio selection: from under-diversification to concentration," Empirical Economics, Springer, vol. 64(4), pages 1539-1557, April.
    326. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    327. Serena Ng & Susannah Scanlan, 2023. "Constructing High Frequency Economic Indicators by Imputation," Papers 2303.01863, arXiv.org, revised Oct 2023.
    328. Matthias M. M. Buehlmaier & Kit Pong Wong, 2020. "Should investors join the index revolution? Evidence from around the world," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 192-218, May.
    329. Dotsis, George, 2017. "The market price of risk of the variance term structure," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 41-52.
    330. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    331. Hui Guo & Robert Savickas, 2006. "Understanding stock return predictability," Working Papers 2006-019, Federal Reserve Bank of St. Louis.
    332. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    333. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    334. Benoît Sévi & César Baena, 2012. "A reassessment of the risk-return tradeoff at the daily horizon," Economics Bulletin, AccessEcon, vol. 32(1), pages 190-203.
    335. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
    336. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    337. Philippe Masset & Martin Wallmeier, 2010. "A High†Frequency Investigation of the Interaction between Volatility and DAX Returns," European Financial Management, European Financial Management Association, vol. 16(3), pages 327-344, June.
    338. Umutlu, Mehmet, 2019. "Does idiosyncratic volatility matter at the global level?," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 252-268.
    339. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2013. "Conditional alphas and realized betas," Textos para discussão 341, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    340. Cosemans, M. & Frehen, R.G.P. & Schotman, P.C. & Bauer, R.M.M.J., 2009. "Efficient Estimation of Firm-Specific Betas and its Benefits for Asset Pricing Tests and Portfolio Choice," MPRA Paper 23557, University Library of Munich, Germany.
    341. Masud Alam, 2021. "Time Varying Risk in U.S. Housing Sector and Real Estate Investment Trusts Equity Return," Papers 2107.10455, arXiv.org.
    342. Sara Boni & Massimiliano Caporin & Francesco Ravazzolo, 2024. "Nowcasting Inflation at Quantiles: Causality from Commodities," BEMPS - Bozen Economics & Management Paper Series BEMPS102, Faculty of Economics and Management at the Free University of Bozen.
    343. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Wang, Tianyang, 2016. "An examination of the flow characteristics of crude oil: Evidence from risk-neutral moments," Energy Economics, Elsevier, vol. 54(C), pages 213-223.
    344. Kwon, Ji Ho & Sohn, Bumjean, 2024. "The ICAPM and empirical pricing factors: A simulation study," Finance Research Letters, Elsevier, vol. 60(C).
    345. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    346. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    347. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," Working Papers hal-04141871, HAL.
    348. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
    349. Roi D. Taussig, 2017. "Stickiness of employee expenses and implications for stock returns," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 7(2), pages 297-309, August.
    350. Chelikani, Surya & Marks, Joseph M. & Nam, Kiseok, 2023. "Volatility feedback effect and risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 49-65.
    351. Christian Brownlees & Benjamin Chabot & Eric Ghysels & Christopher J. Kurz, 2015. "Backtesting Systemic Risk Measures During Historical Bank Runs," Working Paper Series WP-2015-9, Federal Reserve Bank of Chicago.
    352. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
    353. Andreou, Elena, 2016. "On the use of high frequency measures of volatility in MIDAS regressions," Journal of Econometrics, Elsevier, vol. 193(2), pages 367-389.
    354. David P. Brown & Miguel A. Ferreira, 2016. "Idiosyncratic Volatility of Small Public Firms and Entrepreneurial Risk," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-59, March.
    355. Lanter, David & Hirsch, Stefan & Finger, Robert, 2018. "Profitability and Competition in EU Food Retailing," 2018 Annual Meeting, August 5-7, Washington, D.C. 274202, Agricultural and Applied Economics Association.
    356. Baeckström, Ylva & Tosun, Onur Kemal & Riefler, Raul, 2024. "Wealth as a moderating effect on gender differences in portfolio holdings," Global Finance Journal, Elsevier, vol. 60(C).
    357. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    358. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    359. Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
    360. Travis L Johnson, 2019. "A Fresh Look at Return Predictability Using a More Efficient Estimator," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 9(1), pages 1-46.
    361. Bansal, Naresh & Stivers, Chris, 2022. "Bond risk’s role in the equity risk-return tradeoff," Journal of Financial Markets, Elsevier, vol. 60(C).
    362. Ryan T. Ball & Jonathan Bonham & Thomas Hemmer, 2020. "Does it pay to ‘Be Like Mike’? Aspiratonal peer firms and relative performance evaluation," Review of Accounting Studies, Springer, vol. 25(4), pages 1507-1541, December.
    363. Huang, Lin & Wang, Zijun, 2014. "Is the investment factor a proxy for time-varying investment opportunities? The US and international evidence," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 219-232.
    364. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
    365. Jiang, Fuwei & Liu, Hongkui & Yu, Jiasheng & Zhang, Huajing, 2023. "International stock return predictability: The role of U.S. uncertainty spillover," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    366. Jianjian Jin, 2015. "Jump-Diffusion Long-Run Risks Models, Variance Risk Premium, and Volatility Dynamics," Review of Finance, European Finance Association, vol. 19(3), pages 1223-1279.
    367. Liu, Dehong & Gu, Hongmei & Lung, Peter, 2016. "The equity mispricing: Evidence from China's stock market," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 211-223.
    368. Pierpaolo Andriani & Bill McKelvey, 2009. "Perspective ---From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations," Organization Science, INFORMS, vol. 20(6), pages 1053-1071, December.
    369. Kinnunen, Jyri, 2013. "Dynamic return predictability in the Russian stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 107-121.
    370. Reschenhofer, Erhard & Mangat, Manveer Kaur & Stark, Thomas, 2020. "Volatility forecasts, proxies and loss functions," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 133-153.
    371. Dirk Swagerman & Ivan Novakovic, 2010. "Multi-National Evidence On Calendar Patterns In Stock Returns: An Empirical Case Study On Investment Strategy And The Halloween Effect," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 4(4), pages 23-42.
    372. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2009. "GDP nowcasting with ragged-edge data : A semi-parametric modelling," Post-Print halshs-00344839, HAL.
    373. Wang, Hailong & Hu, Duni, 2024. "Heterogeneous beliefs with information processing capacity constraints and asset pricing in a monetary economy," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    374. Tseng, Tseng-Chan & Lee, Chien-Chiang & Chen, Mei-Ping, 2015. "Volatility forecast of country ETF: The sequential information arrival hypothesis," Economic Modelling, Elsevier, vol. 47(C), pages 228-234.
    375. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R. & Rothman, Philip, 2010. "An empirical investigation of stock market behavior in the Middle East and North Africa," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 413-427, June.
    376. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    377. Mathijs Cosemans & Rik Frehen & Peter C. Schotman & Rob Bauer, 2016. "Estimating Security Betas Using Prior Information Based on Firm Fundamentals," The Review of Financial Studies, Society for Financial Studies, vol. 29(4), pages 1072-1112.
    378. Yang, Chunpeng & Jia, Yun, 2016. "Buy-sell imbalance and the mean-variance relation," Pacific-Basin Finance Journal, Elsevier, vol. 40(PA), pages 49-58.
    379. Laine, Olli-Matti & Lindblad, Annika, 2020. "Nowcasting Finnish GDP growth using financial variables: a MIDAS approach," BoF Economics Review 4/2020, Bank of Finland.
    380. Ryuta Sakemoto, 2018. "The intertemporal relation between expected returns and conditional correlations between precious metals and the stock market," Economics and Business Letters, Oviedo University Press, vol. 7(1), pages 24-35.
    381. Yao, Can-Zhong & Li, Min-Jian, 2023. "GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    382. Huang, Teng-Ching & Wu, Ching-Chih & Lin, Bing-Huei, 2016. "Institutional herding and risk–return relationship," Journal of Business Research, Elsevier, vol. 69(6), pages 2073-2080.
    383. Hatemi-J, Abdulnasser & Irandoust, Manuchehr, 2011. "The dynamic interaction between volatility and returns in the US stock market using leveraged bootstrap simulations," Research in International Business and Finance, Elsevier, vol. 25(3), pages 329-334, September.
    384. Rafique, Amir & Iqbal, Khurram & Zakaria, Muhammad & Mujtaba, Ghulam, 2019. "Investigating ICAPM with mean-reverting dynamic conditional correlation: Evidence from an emerging stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 514-523.
    385. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yuan, Jing, 2018. "Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 13-31.
    386. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    387. Pedro Piccoli & Newton C. A. da Costa & Wesley Vieira da Silva & June A. W. Cruz, 2018. "Investor sentiment and the risk–return tradeoff in the Brazilian market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 599-618, November.
    388. Long Chen & Hui Guo & Lu Zhang, 2006. "Equity market volatility and expected risk premium," Working Papers 2006-007, Federal Reserve Bank of St. Louis.
    389. Michael D. Boldin & Jonathan H. Wright, 2015. "Weather-adjusting employment data," Working Papers 15-5, Federal Reserve Bank of Philadelphia.
    390. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    391. Brenner, Menachem & Izhakian, Yehuda, 2018. "Asset pricing and ambiguity: Empirical evidence⁎," Journal of Financial Economics, Elsevier, vol. 130(3), pages 503-531.
    392. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
    393. Tan, Zhengxun & Xiao, Binuo & Huang, Yilong & Zhou, Li, 2021. "Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    394. Bali, Turan G. & Engle, Robert F., 2010. "The intertemporal capital asset pricing model with dynamic conditional correlations," Journal of Monetary Economics, Elsevier, vol. 57(4), pages 377-390, May.
    395. Chiang, Thomas C. & Li, Huimin & Zheng, Dazhi, 2015. "The intertemporal risk-return relationship: Evidence from international markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 156-180.
    396. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2006. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Working Papers 0630, Banco de España.
    397. Minxian Yang, 2014. "The Risk Return Relationship: Evidence from Index Return and Realised Variance Series," Discussion Papers 2014-16, School of Economics, The University of New South Wales.
    398. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    399. Cenesizoglu, Tolga, 2022. "Return decomposition over the business cycle," Journal of Banking & Finance, Elsevier, vol. 143(C).
    400. Chevapatrakul, Thanaset, 2013. "Return sign forecasts based on conditional risk: Evidence from the UK stock market index," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2342-2353.
    401. Curato, Imma Valentina & Sanfelici, Simona, 2022. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Econometrics and Statistics, Elsevier, vol. 23(C), pages 53-82.
    402. Vozlyublennaia, Nadia, 2013. "Do firm characteristics matter for the dynamics of idiosyncratic risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 35-46.
    403. Zhang, Yunhan & Li, Yan & Zhao, Wanli & Ji, Qiang, 2024. "Climate risk performance and returns integration of Chinese listed energy companies," Energy Economics, Elsevier, vol. 129(C).
    404. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
    405. Durham, Garland B., 2007. "SV mixture models with application to S&P 500 index returns," Journal of Financial Economics, Elsevier, vol. 85(3), pages 822-856, September.
    406. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
    407. David Allen & Stephen Satchell & Colin Lizieri, 2024. "Quantifying the non-Gaussian gain," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 1-18, February.
    408. Michael William Ashby & Oliver Bruce Linton, 2024. "Do Consumption-Based Asset Pricing Models Explain the Dynamics of Stock Market Returns?," JRFM, MDPI, vol. 17(2), pages 1-41, February.
    409. Yang, Minxian, 2019. "The risk return relationship: Evidence from index returns and realised variances," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

  20. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.

    Cited by:

    1. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    2. Carrasco, Marine & Florens, Jean-Pierre, 2014. "On The Asymptotic Efficiency Of Gmm," Econometric Theory, Cambridge University Press, vol. 30(2), pages 372-406, April.
    3. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    4. Hao Zhou, 2003. "Itô conditional moment generator and the estimation of short rate processes," Finance and Economics Discussion Series 2003-32, Board of Governors of the Federal Reserve System (U.S.).
    5. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    6. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    7. Ghysels, Eric & Tauchen, George, 2003. "Frontiers of financial econometrics and financial engineering," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 1-7.
    8. Kim, Myung Suk & Wang, Suojin, 2008. "Consistent estimation in regression models for the drift function in some continuous time models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2682-2691, January.
    9. Marine Carrasco, 2004. "Chi-square Tests for Parameter Stability," RCER Working Papers 508, University of Rochester - Center for Economic Research (RCER).
    10. Kristensen, Dennis, 2004. "Estimation of partial differential equations with applications in finance," LSE Research Online Documents on Economics 24738, London School of Economics and Political Science, LSE Library.
    11. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.

  21. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.

    Cited by:

    1. Siddiqi, Hammad, 2014. "Analogy Making and the Structure of Implied Volatility Skew," MPRA Paper 60921, University Library of Munich, Germany.
    2. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    3. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    4. Christophe M. Boucher & Bertrand B. Maillet, 2013. "Learning by Failing: A Simple VaR Buffer," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 22(2), pages 113-127, May.
    5. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2020. "An analytical perturbative solution to the Merton–Garman model using symmetries," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(1), pages 3-22, January.
    6. Turan G. Bali & Armen Hovakimian, 2009. "Volatility Spreads and Expected Stock Returns," Management Science, INFORMS, vol. 55(11), pages 1797-1812, November.
    7. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    8. Tim Bollerslev & Uta Kretschmer & Christian Pigorsch & George Tauchen, 2010. "A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects," Working Papers 10-06, Duke University, Department of Economics.
    9. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    10. Kim Christensen & Roel Oomen & Mark Podolskij, 2009. "Realised Quantile-Based Estimation of the Integrated Variance," CREATES Research Papers 2009-27, Department of Economics and Business Economics, Aarhus University.
    11. Yong-Chao Zhang & Na Zhang & Qinglong Zhou, 2023. "The Closed-Form Solution of an Extraction Model and Optimal Stopping Problems with Regime Switching," Mathematics, MDPI, vol. 11(20), pages 1-16, October.
    12. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    13. Andreasen, Martin M., 2010. "Stochastic volatility and DSGE models," Economics Letters, Elsevier, vol. 108(1), pages 7-9, July.
    14. Asai, M. & McAleer, M.J. & Medeiros, M.C., 2010. "Asymmetry and Long Memory in Volatility Modelling," Econometric Institute Research Papers EI 2010-60, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian & Sebastien McMahon, 2006. "Forecasting Commodity Prices: GARCH, Jumps, and Mean Reversion," Staff Working Papers 06-14, Bank of Canada.
    17. Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2016. "Second order multiscale stochastic volatility asymptotics: stochastic terminal layer analysis and calibration," Finance and Stochastics, Springer, vol. 20(3), pages 543-588, July.
    18. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    19. Andreas Kaeck & Carol Alexander, 2010. "Stochastic Volatility Jump-Diffusions for Equity Index Dynamics," ICMA Centre Discussion Papers in Finance icma-dp2010-06, Henley Business School, University of Reading.
    20. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    21. Santa-Clara, Pedro & Saretto, Alessio, 2004. "Option Strategies: Good Deals and Margin Calls," University of California at Los Angeles, Anderson Graduate School of Management qt0499w44p, Anderson Graduate School of Management, UCLA.
    22. Chris Bardgett & Elise Gourier & Markus Leippold, 2016. "Inferring Volatility Dynamics and Risk Premia from the S&P 500 and VIX markets," Working Papers 780, Queen Mary University of London, School of Economics and Finance.
    23. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," SFB 649 Discussion Papers 2014-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    24. Constantinides, George M. & Lian, Lei, 2021. "The Supply and Demand of S&P 500 Put Options," Critical Finance Review, now publishers, vol. 10(1), pages 1-20, April.
    25. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    26. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    27. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    28. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    29. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2008. "The Role Of Implied Volatility In Forecasting Future Realized Volatility And Jumps In Foreign Exchange, Stock, And Bond Markets," Working Paper 1181, Economics Department, Queen's University.
    30. George Tauchen & Hao Zhou, 2006. "Realized jumps on financial markets and predicting credit spreads," Finance and Economics Discussion Series 2006-35, Board of Governors of the Federal Reserve System (U.S.).
    31. Viktor Todorov & George Tauchen & Iaryna Grynkiv, 2011. "Volatility Activity: Specification and Estimation," Working Papers 11-23, Duke University, Department of Economics.
    32. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    33. Basel M. A. Awartani, 2008. "Forecasting volatility with noisy jumps: an application to the Dow Jones Industrial Average stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 267-278.
    34. Bernard, Jean-Thomas & Khalaf, Lynda & Kichian, Maral & McMahon, Sébastien, 2008. "Oil Prices: Heavy Tails, Mean Reversion and the Convenience Yield," Cahiers de recherche 0801, GREEN.
    35. Francisco Peñaranda & Jón Daníelsson, 2007. "On the impact of fundamentals, liquidity and coordination on market stability," Economics Working Papers 1003, Department of Economics and Business, Universitat Pompeu Fabra, revised Mar 2010.
    36. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
    37. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
    38. Lazar, Emese & Qi, Shuyuan, 2022. "Model risk in the over-the-counter market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 769-784.
    39. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," Risk and Sustainable Management Group Working Papers 207677, University of Queensland, School of Economics.
    40. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    41. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    42. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    43. Rhys M. Bidder & Matthew E. Smith, 2013. "Doubts and Variability: A Robust Perspective on Exotic Consumption Series," Working Paper Series 2013-28, Federal Reserve Bank of San Francisco.
    44. Christensen, Kim & Podolskij, Mark, 2006. "Range-Based Estimation of Quadratic Variation," Technical Reports 2006,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    45. Qian Han, 2013. "A Linear Relationship between Market Prices of Risks and Risk Aversion in Complete Stochastic Volatility Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    46. Chiu, Hsin-Yu & Chen, Ting-Fu, 2020. "Impact of volatility jumps in a mean-reverting model: Derivative pricing and empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    47. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    48. Paola Zerilli, 2007. "Option Pricing and Spikes in Volatility: Theoretical and Empirical Analysis," Discussion Papers 07/08, Department of Economics, University of York.
    49. Huber, Christoph & Huber, Juergen & Kirchler, Michael, 2021. "Volatility shocks and investment behavior," OSF Preprints jr4eb, Center for Open Science.
    50. Matthew Lorig, 2010. "Time-Changed Fast Mean-Reverting Stochastic Volatility Models," Papers 1010.5203, arXiv.org, revised Apr 2012.
    51. Evarist Stoja & Richard D. F. Harris & Fatih Yilmaz, 2010. "A Cyclical Model of Exchange Rate Volatility," Bristol Economics Discussion Papers 10/618, School of Economics, University of Bristol, UK.
    52. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    53. Chris Brooks & Marcel Prokopczuk, 2011. "The Dynamics of Commodity Prices," ICMA Centre Discussion Papers in Finance icma-dp2011-09, Henley Business School, University of Reading.
    54. S. Bordignon & D. Raggi, 2008. "Volatility, Jumps and Predictability of Returns: a Sequential Analysis," Working Papers 636, Dipartimento Scienze Economiche, Universita' di Bologna.
    55. Boes, M.J. & Drost, F.C. & Werker, B.J.M., 2007. "The impact of overnight periods on option pricing," Other publications TiSEM fc062462-2359-45ac-8826-d, Tilburg University, School of Economics and Management.
    56. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    57. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    58. Andersen, Torben G. & Riva, Raul & Thyrsgaard, Martin & Todorov, Viktor, 2023. "Intraday cross-sectional distributions of systematic risk," Journal of Econometrics, Elsevier, vol. 235(2), pages 1394-1418.
    59. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    60. MacLean, Leonard C. & Foster, Michael E. & Ziemba, William T., 2007. "Covariance complexity and rates of return on assets," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3503-3523, November.
    61. Yi-Hao Lai & Yi-Chiuan Wang & Wei-Shih Chung, 2018. "Initial Jump and Recovering Jump in the S&P 500 Index Returns: A Jump-Recovering-Switching Approach," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 14(1), pages 51-66, February.
    62. Äijö, Janne, 2008. "Implied volatility term structure linkages between VDAX, VSMI and VSTOXX volatility indices," Global Finance Journal, Elsevier, vol. 18(3), pages 290-302.
    63. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premia and Macroeconomic Volatilities," Money Macro and Finance (MMF) Research Group Conference 2006 140, Money Macro and Finance Research Group.
    64. John M. Maheu & Thomas H. McCurdy & Xiaofei Zhao, 2012. "Do Jumps Contribute to the Dynamics of the Equity Premium?," Working Paper series 47_12, Rimini Centre for Economic Analysis.
    65. Kevin Sheppard & Andrew J. Patton, 2008. "Evaluating Volatility and Correlation Forecasts," Economics Series Working Papers 2008fe22, University of Oxford, Department of Economics.
    66. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2009. "Asymmetry and Leverage in Realized Volatility," CARF F-Series CARF-F-167, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    67. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.
    68. Fleming, Jeff & Paye, Bradley S., 2011. "High-frequency returns, jumps and the mixture of normals hypothesis," Journal of Econometrics, Elsevier, vol. 160(1), pages 119-128, January.
    69. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    70. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    71. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    72. A. S. Hurn & K. A. Lindsay & A. J. McClelland, 2015. "Estimating the Parameters of Stochastic Volatility Models Using Option Price Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 579-594, October.
    73. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    74. Qian Han & Calum G. Turvey, 2013. "A Robust Equilibrium Relationship between Market Prices of Risks and Risk Aversion in Dynamically Complete Stochastic," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    75. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    76. Brennan, Michael J & LIU, XIAOQUAN & Xia, Yihong, 2005. "Option Pricing Kernels and the ICAPM," University of California at Los Angeles, Anderson Graduate School of Management qt4d90p8ss, Anderson Graduate School of Management, UCLA.
    77. Fangfang Wang, 2016. "An Unbiased Measure of Integrated Volatility in the Frequency Domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 147-164, March.
    78. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    79. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    80. Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
    81. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    82. Rangel José Gonzalo, 2009. "Macroeconomic News, Announcements, and Stock Market Jump Intensity Dynamics," Working Papers 2009-15, Banco de México.
    83. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2007. "Econometric Asset Pricing Modelling," Working Papers 2007-18, Center for Research in Economics and Statistics.
    84. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    85. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    86. Alexandre Ziegler, 2007. "Why Does Implied Risk Aversion Smile?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 859-904.
    87. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    88. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    89. Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," Working Papers in Economics 11/11, University of Canterbury, Department of Economics and Finance.
    90. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    91. Jean-Pierre Fouque & Matthew Lorig, 2010. "A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model," Papers 1007.4366, arXiv.org, revised Apr 2012.
    92. Olivier Scaillet & Adrien Treccani & Christopher Trevisan, 2017. "High-Frequency Jump Analysis of the Bitcoin Market," Papers 1704.08175, arXiv.org, revised Jun 2017.
    93. Jan Hanousek & Evžen Kočenda & Jan Novotný, 2016. "Shluková analýza skoků na kapitálových trzích [Cluster Analysis of Jumps on Capital Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2016(2), pages 127-144.
    94. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    95. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    96. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    97. Wong, Hoi Ying & Chan, Chun Man, 2007. "Lookback options and dynamic fund protection under multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 357-385, May.
    98. Kim, Kyong-Hui & Yun, Sim & Kim, Nam-Ung & Ri, Ju-Hyuang, 2019. "Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 215-231.
    99. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    100. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2011. "Can standard preferences explain the prices of out-of-the-money S&P 500 put options?," Working Paper Series WP-2011-11, Federal Reserve Bank of Chicago.
    101. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
    102. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    103. Chernov, Mikhail & Broadie, Mark & Johannes, Michael, 2007. "Understanding Index Option Returns," CEPR Discussion Papers 6239, C.E.P.R. Discussion Papers.
    104. Song Bin & Liang Enqi & Liu Bing, 2014. "American Option Pricing Using Particle Filtering Under Stochastic Volatility Correlated Jump Model," Journal of Systems Science and Information, De Gruyter, vol. 2(6), pages 505-519, December.
    105. Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
    106. Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.
    107. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    108. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    109. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    110. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.
    111. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    112. Amendola, Alessandra & Candila, Vincenzo & Scognamillo, Antonio, 2015. "On the influence of the U.S. monetary policy on the crude oil price volatility," 2015 Fourth Congress, June 11-12, 2015, Ancona, Italy 207860, Italian Association of Agricultural and Applied Economics (AIEAA).
    113. Andras Fulop & Junye Li & Jun Yu, 2012. "Bayesian Learning of Impacts of Self-Exciting Jumps in Returns and Volatility," Working Papers 03-2012, Singapore Management University, School of Economics.
    114. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    115. Frank Schorfheide & Dongho Song & Amir Yaron, 2014. "Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach," NBER Working Papers 20303, National Bureau of Economic Research, Inc.
    116. Daisuke Nagakura & Toshiaki Watanabe, 2011. "A State Space Approach to Estimating the Integrated Variance under the Existence of Market Microstructure Noise," Global COE Hi-Stat Discussion Paper Series gd11-200, Institute of Economic Research, Hitotsubashi University.
    117. Manganelli, Simone & Idier, Julien & Vergote, Olivier & Ghysels, Eric, 2014. "A high frequency assessment of the ECB securities markets programme," Working Paper Series 1642, European Central Bank.
    118. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    119. Matic, Jovanka Lili & Packham, Natalie & Härdle, Wolfgang Karl, 2021. "Hedging Cryptocurrency Options," MPRA Paper 110774, University Library of Munich, Germany.
    120. Xiaodong Du & Dermot J. Hayes & Cindy L. Yu, 2009. "Dynamics of Biofuel Stock Prices: A Bayesian Approach," Center for Agricultural and Rural Development (CARD) Publications 09-wp498, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    121. Emese Lazar & Shuyuan Qi & Radu Tunaru, 2020. "Measures of Model Risk in Continuous-time Finance Models," Papers 2010.08113, arXiv.org, revised Oct 2020.
    122. Christoph Huber & Jürgen Huber & Michael Kirchler, 2020. "Market shocks and professionals' investment behavior - Evidence from the COVID-19 crash," Working Papers 2020-11, Faculty of Economics and Statistics, Universität Innsbruck.
    123. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    124. John M. Maheu & Thomas McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
    125. Eric Hillebrand, 2003. "Overlaying Time Scales and Persistence Estimation in GARCH(1,1) Models," Econometrics 0301003, University Library of Munich, Germany.
    126. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    127. Boyarchenko, Svetlana & Levendorskii, Sergei, 2008. "Exit problems in regime-switching models," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 180-206, January.
    128. Oliver Pfante & Nils Bertschinger, 2019. "Information-Theoretic Analysis Of Stochastic Volatility Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-21, February.
    129. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    130. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    131. Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
    132. Choi, Sun-Yong, 2019. "The influence of shock signals on the change in volatility term structure," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    133. Carsten H. Chong & Viktor Todorov, 2023. "Volatility of Volatility and Leverage Effect from Options," Papers 2305.04137, arXiv.org, revised Jan 2024.
    134. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    135. Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
    136. Jeonggyu Huh & Jaegi Jeon & Yong-Ki Ma, 2020. "Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 185-210, January.
    137. Jeremy Graveline & Irina Zviadadze & Mikhail Chernov, 2012. "Crash Risk in Currency Returns," 2012 Meeting Papers 753, Society for Economic Dynamics.
    138. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.
    139. Ye, Wuyi & Guo, Ranran & Deschamps, Bruno & Jiang, Ying & Liu, Xiaoquan, 2021. "Macroeconomic forecasts and commodity futures volatility," Economic Modelling, Elsevier, vol. 94(C), pages 981-994.
    140. Tim Bollerslev & Hao Zhou, 2003. "Volatility puzzles: a unified framework for gauging return-volatility regressions," Finance and Economics Discussion Series 2003-40, Board of Governors of the Federal Reserve System (U.S.).
    141. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    142. Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    143. Ahmad Telfah, "undated". "" Do Financial Planners Take Financial Crashes In Their Advice: Dynamic Asset Allocation Under Thick Tails And Fast Volatility Updating," API-Working Paper Series 0604, Arab Planning Institute - Kuwait, Information Center.
    144. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Conditional jumps in volatility and their economic determinants," "Marco Fanno" Working Papers 0138, Dipartimento di Scienze Economiche "Marco Fanno".
    145. Asai, M. & Caporin, M. & McAleer, M.J., 2012. "Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2012-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    146. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, Center for Economic and Financial Research (CEFIR).
    147. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    148. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    149. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    150. MacLean, Leonard & Zhao, Yonggan & Ziemba, William, 2006. "Dynamic portfolio selection with process control," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 317-339, February.
    151. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    152. Andreas Kaeck & Carol Alexander, 2013. "Stochastic Volatility Jump†Diffusions for European Equity Index Dynamics," European Financial Management, European Financial Management Association, vol. 19(3), pages 470-496, June.
    153. Jeonggyu Huh, 2018. "Measuring Systematic Risk with Neural Network Factor Model," Papers 1809.04925, arXiv.org.
    154. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    155. Peter Christoffersen & Kris Dorion & Yintian Wang, 2008. "Volatility Components, Affine Restrictions and Non-Normal Innovations," CREATES Research Papers 2008-10, Department of Economics and Business Economics, Aarhus University.
    156. Thuy Thi Thu Truong & Jungmu Kim, 2019. "Premiums for Non-Sustainable and Sustainable Components of Market Volatility: Evidence from the Korean Stock Market," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    157. Veiga, Helena, 2006. "Are feedback factors important in modelling financial data?," DES - Working Papers. Statistics and Econometrics. WS ws060101, Universidad Carlos III de Madrid. Departamento de Estadística.
    158. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    159. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Volatility jumps and their economic determinants," CREATES Research Papers 2014-27, Department of Economics and Business Economics, Aarhus University.
    160. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
    161. Vance L. Martin & Brenda Gonzalez-Hermosillo, & Mardi Dungey & Renee A. Fry, 2004. "Empirical Modelling of Contagion: A Review of Methodologies," Econometric Society 2004 Australasian Meetings 243, Econometric Society.
    162. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    163. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    164. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    165. Huang, Darien & Kilic, Mete, 2019. "Gold, platinum, and expected stock returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 50-75.
    166. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    167. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
    168. Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
    169. Jianjian Jin, 2013. "Jump-Diffusion Long-Run Risks Models, Variance Risk Premium and Volatility Dynamics," Staff Working Papers 13-12, Bank of Canada.
    170. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    171. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    172. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    173. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    174. Per Bjarte Solibakke, 2021. "Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities," JRFM, MDPI, vol. 14(11), pages 1-17, October.
    175. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    176. Radu Lupu, 2014. "Simultaneity of Tail Events for Dynamic Conditional Distributions of Stock Market Index Returns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 49-64, December.
    177. Xinyu WU & Hailin ZHOU, 2016. "GARCH DIFFUSION MODEL, iVIX, AND VOLATILITY RISK PREMIUM," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 327-342.
    178. Bonomo, Marco & Garcia, René & Meddahi, Nour & Tédongap, Roméo, 2015. "The long and the short of the risk-return trade-off," Journal of Econometrics, Elsevier, vol. 187(2), pages 580-592.
    179. Chae-Deug, Yi, 2024. "Realized normal volatility and maximum outlying jumps in high frequency returns for Korean won–US Dollar," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    180. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    181. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    182. Oh, Dong Hwan & Park, Yang-Ho, 2023. "GARCH option pricing with volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 146(C).
    183. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    184. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    185. Ming‐Chi Chen & Chia‐Chien Chang & Shih‐Kuei Lin & So‐De Shyu, 2010. "Estimation of Housing Price Jump Risks and Their Impact on the Valuation of Mortgage Insurance Contracts," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 399-422, June.
    186. Ait-Sahalia, Yacine, 2004. "Disentangling diffusion from jumps," Journal of Financial Economics, Elsevier, vol. 74(3), pages 487-528, December.
    187. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    188. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai & Yintian Wang, 2008. "Option Valuation with Long-run and Short-run Volatility Components," CREATES Research Papers 2008-11, Department of Economics and Business Economics, Aarhus University.
    189. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    190. Todorov, Viktor & Tauchen, George & Grynkiv, Iaryna, 2011. "Realized Laplace transforms for estimation of jump diffusive volatility models," Journal of Econometrics, Elsevier, vol. 164(2), pages 367-381, October.
    191. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    192. Jovanka Lili Matic & Natalie Packham & Wolfgang Karl Härdle, 2023. "Hedging cryptocurrency options," Review of Derivatives Research, Springer, vol. 26(1), pages 91-133, April.
    193. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    194. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    195. Cyrille Dubarry & Randal Douc, 2014. "Calibrating the exponential Ornstein--Uhlenbeck multiscale stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 443-456, March.
    196. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    197. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    198. Rodolfo C. Moura & Márcio P. Laurini, 2021. "Spillovers and jumps in global markets: A comparative analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5997-6013, October.
    199. Alexandre Ziegler, 2002. "Why does Implied Risk Aversion Smile?," FAME Research Paper Series rp47, International Center for Financial Asset Management and Engineering.
    200. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    201. Lena Cleanthous & Pany Karamanou, 2011. "The ECB Monetary Policy and the Current Financial Crisis," Working Papers 2011-1, Central Bank of Cyprus.
    202. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    203. Andreas Kaeck & Carol Alexander, 2010. "VIX Dynamics with Stochastic Volatility of Volatility," ICMA Centre Discussion Papers in Finance icma-dp2010-11, Henley Business School, University of Reading.
    204. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    205. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    206. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    207. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    208. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    209. Perron, Benoit, 2004. "Détection non paramétrique de sauts dans la volatilité des marchés financiers," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 229-251, Juin-Sept.
    210. Xu Cheng & Eric Renault & Paul Sangrey, 2024. "Identifying the Volatility Risk Price Through the Leverage Effect," PIER Working Paper Archive 24-013, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    211. Bjoern Schulte-Tillman & Mawuli Segnon & Bernd Wilfling, 2022. "Financial-market volatility prediction with multiplicative Markov-switching MIDAS components," CQE Working Papers 9922, Center for Quantitative Economics (CQE), University of Muenster.
    212. Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
    213. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.
    214. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
    215. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    216. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    217. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    218. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    219. Belén Nieto & Alfonso Novales Cinca & Gonzalo Rubio, 2014. "Macroeconomic and Financial Determinants of the Volatility of Corporate Bond Returns," Documentos de Trabajo del ICAE 2014-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    220. Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2010. "What does financial volatility tell us about macroeconomic fluctuations?," MPRA Paper 34104, University Library of Munich, Germany, revised Jun 2011.
    221. Tim Bollerslev & Morten Ø. Nielsen & Per Houmann Frederiksen & Torben G. Andersen, 2008. "Continuous-time Models, Realized Volatilities, And Testable Distributional Implications For Daily Stock Returns," Working Paper 1173, Economics Department, Queen's University.
    222. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    223. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    224. Hatchett, Robert B. & Brorsen, B. Wade & Anderson, Kim B., 2009. "Optimal Length of Moving Average to Forecast Futures Basis," 2009 Conference, April 20-21, 2009, St. Louis, Missouri 53048, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    225. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    226. Elena Andreou & Eric Ghysels, 2007. "Quality Control for Structural Credit Risk Models," University of Cyprus Working Papers in Economics 3-2007, University of Cyprus Department of Economics.
    227. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    228. Londono Yarce, J.M., 2011. "Essays on asset pricing," Other publications TiSEM 744a2ac5-7ada-4fa8-a7aa-e, Tilburg University, School of Economics and Management.
    229. Chernov, Mikhail, 2003. "Empirical reverse engineering of the pricing kernel," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 329-364.
    230. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2021. "Consistent and efficient pricing of SPX and VIX options under multiscale stochastic volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 559-576, May.
    231. Kam C. Chan & Carl R. Chen & Peter P. Lung, 2010. "Business Cycles and Net Buying Pressure in the S&P 500 Futures Options," European Financial Management, European Financial Management Association, vol. 16(4), pages 624-657, September.
    232. Markus Bibinger & Christopher J. Neely & Lars Winkelmann, 2017. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Working Papers 2017-12, Federal Reserve Bank of St. Louis.
    233. Kim Christensen & Martin Thyrsgaard & Bezirgen Veliyev, 2018. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," CREATES Research Papers 2018-19, Department of Economics and Business Economics, Aarhus University.
    234. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    235. Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    236. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    237. Yacine Ait-Sahalia, 2003. "Disentangling Volatility from Jumps," NBER Working Papers 9915, National Bureau of Economic Research, Inc.
    238. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    239. Florescu, Ionuţ & Pãsãricã, Cristian Gabriel, 2009. "A study about the existence of the leverage effect in stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 419-432.
    240. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    241. Coppejans, Mark & Gallant, A. Ronald, 2000. "Cross Validated SNP Density Estimates," Working Papers 00-10, Duke University, Department of Economics.
    242. YI, Chae-Deug, 2023. "Exchange rate volatility and intraday jump probability with periodicity filters using a local robust variance," Finance Research Letters, Elsevier, vol. 55(PA).
    243. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    244. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.
    245. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2021. "Multiscale Stochastic Volatility Model with Heavy Tails and Leverage Effects," JRFM, MDPI, vol. 14(5), pages 1-28, May.
    246. Gordon R. Richards, 2004. "A fractal forecasting model for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 586-601.
    247. Márcio Laurini, 2012. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," IBMEC RJ Economics Discussion Papers 2012-02, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    248. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2008. "Time-Deformation Modeling Of Stock Returns Directed By Duration Processes," Working Papers 08010, University of Waterloo, Department of Economics.
    249. Julien Chevallier & St�phane Goutte, 2015. "Detecting jumps and regime switches in international stock markets returns," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1011-1019, September.
    250. Tobias Adrian & Joshua V. Rosenberg, 2006. "Stock returns and volatility: pricing the short-run and long-run components of market risk," Staff Reports 254, Federal Reserve Bank of New York.
    251. Helena Veiga, 2009. "Financial Stylized Facts and the Taylor-Effect in Stochastic Volatility Models," Economics Bulletin, AccessEcon, vol. 29(1), pages 265-276.
    252. Chiu, Ching-Wai (Jeremy) & Harris, Richard & Stoja, Evarist & Chin, Michael, 2016. "Financial market volatility, macroeconomic fundamentals and investor sentiment," Bank of England working papers 608, Bank of England.
    253. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    254. Mardi Dungey & Lyudmyla Hvozdyk, 2010. "Cojumping: Evidence from the US Treasury Bond and Futures Markets," NCER Working Paper Series 56, National Centre for Econometric Research, revised 20 Jul 2010.
    255. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    256. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    257. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
    258. Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
    259. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    260. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    261. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.
    262. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2006. "The Information Content Of Treasury Bond Options Concerning Future Volatility And Price Jumps," Working Paper 1188, Economics Department, Queen's University.
    263. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
    264. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    265. Per Bjarte Solibakke, 2022. "Projecting and Forecasting the Latent Volatility for the Nasdaq OMX Nordic/Baltic Financial Electricity Market Applying Stochastic Volatility Market Characteristics," Energies, MDPI, vol. 15(10), pages 1-20, May.
    266. Gonzalez-Hermosillo Gonzalez, B.M., 2008. "Transmission of shocks across global financial markets : The role of contagion and investors' risk appetite," Other publications TiSEM d684f3c7-7ad8-4e93-88cf-a, Tilburg University, School of Economics and Management.
    267. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    268. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    269. Marina Theodosiou, 2010. "Calendar Time Sampling of High Frequency Financial Asset Price and the Verdict on Jumps," Working Papers 2010-7, Central Bank of Cyprus.
    270. Ahmed, Shamim & Valente, Giorgio, 2015. "Understanding the price of volatility risk in carry trades," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 118-129.
    271. Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.
    272. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    273. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    274. Veiga, Helena, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de Estadística.
    275. John M Maheu & Thomas H McCurdy, 2007. "Modeling foreign exchange rates with jumps," Working Papers tecipa-279, University of Toronto, Department of Economics.
    276. Dungey, Mardi & Hvozdyk, Lyudmyla, 2010. "Cojumping: Evidence from the US Treasury Bond and Future Markets (Discussion Paper 2010-06)," Working Papers 10450, University of Tasmania, Tasmanian School of Business and Economics, revised 14 Jul 2010.
    277. See-Woo Kim & Yong-Ki Ma & Ciprian Necula, 2023. "Modeling Tail Dependence Using Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 129-147, June.
    278. Gregory Connor & Anita Suurlaht, 2012. "Dynamic Stock Market Covariances in the Eurozone," Economics Department Working Paper Series n222-12.pdf, Department of Economics, National University of Ireland - Maynooth.
    279. Monica Gentile & Roberto Renò, 2005. "Specification Analysis of Diffusion Models for the Italian Short Rate," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 34(1), pages 51-83, February.
    280. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    281. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    282. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    283. Liao, Yin & Pan, Zheyao, 2022. "Extreme risk connectedness among global major financial institutions: Links to globalization and emerging market fear," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    284. Svetlana Boyarchenko & Sergei Levendorskii, 2005. "American options: the EPV pricing model," Annals of Finance, Springer, vol. 1(3), pages 267-292, August.
    285. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    286. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    287. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    288. Chyi Lin Lee & Simon Stevenson & Ming‐Long Lee, 2018. "Low‐frequency volatility of real estate securities and macroeconomic risk," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 311-342, November.
    289. Kallsen Jan & Muhle-Karbe Johannes, 2011. "Method of moment estimation in time-changed Lévy models," Statistics & Risk Modeling, De Gruyter, vol. 28(2), pages 169-194, May.
    290. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    291. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    292. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    293. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    294. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
    295. Til Schuermann & Kevin J. Stiroh, 2006. "Visible and hidden risk factors for banks," Staff Reports 252, Federal Reserve Bank of New York.
    296. Oliva, I. & Renò, R., 2018. "Optimal portfolio allocation with volatility and co-jump risk that Markowitz would like," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 242-256.
    297. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    298. Filipović, Damir & Gourier, Elise & Mancini, Loriano, 2016. "Quadratic variance swap models," Journal of Financial Economics, Elsevier, vol. 119(1), pages 44-68.
    299. Baele, Lieven & Londono, Juan M., 2013. "Understanding industry betas," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 30-51.
    300. David S. Bates, 2003. "Maximum Likelihood Estimation of Latent Affine Processes," NBER Working Papers 9673, National Bureau of Economic Research, Inc.
    301. Benoît Sévi & César Baena, 2013. "The explanatory power of signed jumps for the risk-return tradeoff," Economics Bulletin, AccessEcon, vol. 33(2), pages 1029-1046.
    302. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    303. Tyler J. VanderWeele, 2007. "The volatility effects of nontrading for stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1037-1041.
    304. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    305. Jon Wongswan, 2006. "Transmission of Information across International Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1157-1189.
    306. Benoît Sévi & César Baena, 2011. "Brownian motion vs. pure-jump processes for individual stocks," Economics Bulletin, AccessEcon, vol. 31(4), pages 3138-3152.
    307. Jean-Thomas Bernard, Lynda Khalaf, Maral Kichian, and Sebastien McMahon, 2015. "The Convenience Yield and the Informational Content of the Oil Futures Price," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    308. Kadir G. Babaoglou & Peter Christoffersen & Steven L. Heston & Kris Jacobs, 2014. "Option Valuation with Volatility Components, Fat Tails, and Nonlinear Pricing Kernels," CREATES Research Papers 2015-55, Department of Economics and Business Economics, Aarhus University.
    309. Jean-Pierre Fouque & Matthew Lorig & Ronnie Sircar, 2012. "Second Order Multiscale Stochastic Volatility Asymptotics: Stochastic Terminal Layer Analysis & Calibration," Papers 1208.5802, arXiv.org, revised Sep 2015.
    310. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    311. Mingmian Cheng & Norman R. Swanson, 2019. "Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence," Econometrics, MDPI, vol. 7(1), pages 1-32, March.
    312. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    313. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.
    314. Luca Vincenzo Ballestra & Enzo D'Innocenzo & Christian Tezza, 2024. "A GARCH model with two volatility components and two driving factors," Papers 2410.14585, arXiv.org.
    315. Fang, Yan & Ielpo, Florian & Sévi, Benoît, 2012. "Empirical bias in intraday volatility measures," Finance Research Letters, Elsevier, vol. 9(4), pages 231-237.
    316. Benoît Sévi & César Baena, 2012. "A reassessment of the risk-return tradeoff at the daily horizon," Economics Bulletin, AccessEcon, vol. 32(1), pages 190-203.
    317. Cyrus Ramezani & Yong Zeng, 2007. "Maximum likelihood estimation of the double exponential jump-diffusion process," Annals of Finance, Springer, vol. 3(4), pages 487-507, October.
    318. Guofu Zhou & Yingzi Zhu, 2015. "Macroeconomic Volatilities and Long-Run Risks of Asset Prices," Management Science, INFORMS, vol. 61(2), pages 413-430, February.
    319. Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl & Hou, Ai Jun & Wang, Weining, 2018. "Pricing Cryptocurrency options: the case of CRIX and Bitcoin," IRTG 1792 Discussion Papers 2018-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    320. Xiaoxian Ma & Qingzhen Zhao & Jilin Qu, 2008. "Robust portfolio optimization with a generalized expected utility model under ambiguity," Annals of Finance, Springer, vol. 4(4), pages 431-444, October.
    321. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    322. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    323. Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
    324. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2015. "Time-Deformation Modeling of Stock Returns Directed by Duration Processes," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 480-511, April.
    325. Luis F. Espinoza-Audelo & Maricruz Olazabal-Lugo & Fabio Blanco-Mesa & Ernesto León-Castro & Victor Alfaro-Garcia, 2020. "Bonferroni Probabilistic Ordered Weighted Averaging Operators Applied to Agricultural Commodities’ Price Analysis," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    326. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    327. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    328. Bekaert, Geert & Engstrom, Eric, 2010. "Asset Return Dynamics Under Bad Environment-Good Environment Fundamentals," CEPR Discussion Papers 8150, C.E.P.R. Discussion Papers.
    329. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    330. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2019. "An analytical perturbative solution to the Merton Garman model using symmetries," Papers 1909.01413, arXiv.org, revised Jan 2021.
    331. Monica Gentile & Roberto Renò, 2002. "Which Model for the Italian Interest Rates?," LEM Papers Series 2002/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    332. Siddiqi, Hammad, 2014. "Anchoring Heuristic in Option Prices," MPRA Paper 66018, University Library of Munich, Germany, revised 15 Jul 2015.
    333. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    334. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    335. Stephen J. Taylor & Chi‐Feng Tzeng & Martin Widdicks, 2018. "Information about price and volatility jumps inferred from options prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1206-1226, October.
    336. Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
    337. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    338. Ulrich Hounyo & Rasmus T. Varneskov, 2018. "Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach," CREATES Research Papers 2018-16, Department of Economics and Business Economics, Aarhus University.
    339. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    340. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
    341. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    342. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    343. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    344. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    345. Ulrich Hounyo & Rasmus T. Varneskov, 2015. "A Local Stable Bootstrap for Power Variations of Pure-Jump Semimartingales and Activity Index Estimation," CREATES Research Papers 2015-26, Department of Economics and Business Economics, Aarhus University.
    346. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    347. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    348. Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
    349. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    350. Siddiqi, Hammad, 2015. "Anchoring and Adjustment Heuristic in Option Pricing," MPRA Paper 68595, University Library of Munich, Germany.
    351. Jan Novotn?? & Jan Hanousek & Ev??en Ko??enda, 2013. "Price Jump Indicators: Stock Market Empirics During the Crisis," William Davidson Institute Working Papers Series wp1050, William Davidson Institute at the University of Michigan.
    352. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    353. Andreasen Martin M. & Zabczyk Pawel, 2015. "Efficient bond price approximations in non-linear equilibrium-based term structure models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 1-33, February.
    354. Bas Peeters, 2012. "Risk premiums in a simple market model for implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 13(5), pages 739-748, January.
    355. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    356. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    357. Chenxu Li & Yu An & Dachuan Chen & Qi Lin & Nian Si, 2016. "Efficient computation of the likelihood expansions for diffusion models," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1156-1171, December.
    358. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    359. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    360. Vít Bubák & Filip Žikeš, 2009. "Distribution and Dynamics of Central-European Exchange Rates: Evidence from Intraday Data," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(4), pages 334-359, Oktober.
    361. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference (Revised in April 2006, subsequently published in "Journal of Econometrics", 140, 425-449, 2007. )," CARF F-Series CARF-F-011, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    362. Chourdakis, Kyriakos & Dotsis, George, 2011. "Maximum likelihood estimation of non-affine volatility processes," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 533-545, June.
    363. Sohel Azad, A.S.M. & Batten, Jonathan A. & Fang, Victor & Wickramanayake, Jayasinghe, 2015. "International swap market contagion and volatility," Economic Modelling, Elsevier, vol. 47(C), pages 355-371.
    364. Jie Zhu, 2008. "Pricing Volatility of Stock Returns with Volatile and Persistent Components," CREATES Research Papers 2008-14, Department of Economics and Business Economics, Aarhus University.
    365. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2012. "Sources of Risk in Currency Returns," CEPR Discussion Papers 8745, C.E.P.R. Discussion Papers.
    366. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    367. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    368. Asgharian, Hossein & Hou, Ai Jun & Javed, Farrukh, 2013. "Importance of the macroeconomic variables for variance prediction A GARCH-MIDAS approach," Knut Wicksell Working Paper Series 2013/4, Lund University, Knut Wicksell Centre for Financial Studies.
    369. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    370. Xin‐Jiang He & Song‐Ping Zhu, 2018. "On full calibration of hybrid local volatility and regime‐switching models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 586-606, May.
    371. Pukthuanthong, Kuntara & Roll, Richard, 2012. "Internationally correlated jumps," Working Paper Series 1436, European Central Bank.
    372. Paweł Kliber, 2019. "Continuous and jump changes in prices processes in the selected stock markets," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 54, pages 333-344.
    373. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    374. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
    375. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
    376. Aït-Sahalia, Yacine & Karaman, Mustafa & Mancini, Loriano, 2020. "The term structure of equity and variance risk premia," Journal of Econometrics, Elsevier, vol. 219(2), pages 204-230.
    377. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    378. Chong, Carsten H. & Todorov, Viktor, 2024. "Volatility of volatility and leverage effect from options," Journal of Econometrics, Elsevier, vol. 240(1).
    379. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    380. Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
    381. David S. Bates, 2016. "How Crashes Develop: Intradaily Volatility and Crash Evolution," NBER Working Papers 22028, National Bureau of Economic Research, Inc.
    382. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    383. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    384. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.

  22. Eric Ghysels & Alain Guay, 2001. "Testing for Structural Change in the Presence of Auxiliary Models," Cahiers de recherche CREFE / CREFE Working Papers 133, CREFE, Université du Québec à Montréal.

    Cited by:

    1. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    2. Dovonon, Prosper & Hall, Alastair R., 2018. "The asymptotic properties of GMM and indirect inference under second-order identification," Journal of Econometrics, Elsevier, vol. 205(1), pages 76-111.

  23. Elena Andreou & Eric Ghysels, 2001. "Detecting Mutiple Breaks in Financial Market Volatility Dynamics," CIRANO Working Papers 2001s-65, CIRANO.

    Cited by:

    1. Eric Hillebrand & Gunther Schnabl & Yasemin Ulu, 2006. "Japanese Foreign Exchange Intervention and the Yen/Dollar Exchange Rate: A Simultaneous Equations Approach Using Realized Volatility," CESifo Working Paper Series 1766, CESifo.
    2. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    3. Bissoondeeal, Rakesh K. & Karoglou, Michail & Binner, Jane M., 2019. "Structural changes and the role of monetary aggregates in the UK," Journal of Financial Stability, Elsevier, vol. 42(C), pages 100-107.
    4. David McMillan & Mark Wohar, 2011. "Structural breaks in volatility: the case of UK sector returns," Applied Financial Economics, Taylor & Francis Journals, vol. 21(15), pages 1079-1093.
    5. Abi Morshed, Alaa & Andreou, E. & Boldea, Otilia, 2016. "Structural Break Tests Robust to Regression Misspecification," Discussion Paper 2016-019, Tilburg University, Center for Economic Research.
    6. Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
    7. Rohan, Neelabh, 2013. "A time varying GARCH(p,q) model and related statistical inference," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1983-1990.
    8. Michail Karoglou & Bruce Morley & Dennis Thomas, 2013. "Risk and Structural Instability in US House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(3), pages 424-436, April.
    9. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    12. Richard Heaney & Kerry Pattenden, 2005. "Change in unconditional foreign exchange rate volatility: an analysis of the GBP and USD price of the Euro from 2002 to 2003," Applied Economics Letters, Taylor & Francis Journals, vol. 12(15), pages 929-932.
    13. Moses K. Tule & Umar B. Ndako & Samuel F. Onipede, 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, John Wiley & Sons, vol. 35(1), pages 57-65, November.
    14. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    15. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    16. Mario Reyna Cerecero & Diana Salazar Cavazos & Héctor Salgado Banda, 2009. "La curva de rendimiento y su relación con la actividad económica: una aplicación para México," Monetaria, CEMLA, vol. 0(3), pages 297-357, octubre-d.
    17. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2014. "Level shifts in stock returns driven by large shocks," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 41-51.
    18. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    19. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    20. Chatzitzisi, Evanthia & Fountas, Stilianos & Panagiotidis, Theodore, 2021. "Another look at calendar anomalies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 823-840.
    21. D van Dijk & D R Osborn & M Sensier, 2004. "Testing for causality in variance in the presence of breaks," Centre for Growth and Business Cycle Research Discussion Paper Series 45, Economics, The University of Manchester.
    22. Eric Hillebrand & Gunther Schnabl, 2003. "The Effects of Japanese Foreign Exchange Intervention: GARCH Estimation and Change Point Detection," Departmental Working Papers 2003-09, Department of Economics, Louisiana State University.
    23. Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," EconomiX Working Papers 2009-33, University of Paris Nanterre, EconomiX.
    24. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    25. Li Qiang & Wang Liming & Qiu Fei, 2015. "Detecting the Structural Breaks in GARCH Models Based on Bayesian Method: The Case of China Share Index Rate of Return," Journal of Systems Science and Information, De Gruyter, vol. 3(4), pages 321-333, August.
    26. Adnen Ben Nasr & Ahdi N. Ajmi & Rangan Gupta, 2013. "Modeling the Volatility of the Dow Jones Islamic Market World Index Using a Fractionally Integrated Time Varying GARCH (FITVGARCH) Model," Working Papers 201357, University of Pretoria, Department of Economics.
    27. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
    28. Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.
    29. Korkmaz, Turhan & Çevik, Emrah İ. & Atukeren, Erdal, 2012. "Return and volatility spillovers among CIVETS stock markets," Emerging Markets Review, Elsevier, vol. 13(2), pages 230-252.
    30. Pedro Galeano & Dominik Wied, 2017. "Dating multiple change points in the correlation matrix," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 331-352, June.
    31. Omotosho, Babatunde S., 2012. "Endogenous Structural Breaks and Real Exchange Rate Determination in Nigeria since Interbank Foreign Exchange Market (IFEM)," MPRA Paper 98306, University Library of Munich, Germany.
    32. Fakhfekh, Mohamed & Hachicha, Nejib & Jawadi, Fredj & Selmi, Nadhem & Idi Cheffou, Abdoulkarim, 2016. "Measuring volatility persistence for conventional and Islamic banks: An FI-EGARCH approach," Emerging Markets Review, Elsevier, vol. 27(C), pages 84-99.
    33. Roberta Colavecchio & Michael Funke, 2009. "Volatility Dependence across Asia-Pacific Onshore and Offshore Currency Forwards Markets," Working Papers 112009, Hong Kong Institute for Monetary Research.
    34. Schnabl, Gunther & Hillebrand, Eric, 2006. "A structural break in the effects of Japanese foreign exchange intervention on yen/dollar exchange rate volatility," Working Paper Series 650, European Central Bank.
    35. Reem Khamis Hamdan & Allam Mohammed Hamdan, 2020. "Liner and nonliner sectoral response of stock markets to oil price movements: The case of Saudi Arabia," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 336-348, July.
    36. Elena Andreou & Bas J.M. Werker, 2014. "Residual-based Rank Specification Tests for AR-GARCH type models," University of Cyprus Working Papers in Economics 02-2014, University of Cyprus Department of Economics.
    37. Juncal Cunado & Javier Gómez Biscarri & Fernando Pérez de Gracia, 2003. "Structural Changes in Volatility and Stock Market Development: Evidence for Spain," Faculty Working Papers 06/03, School of Economics and Business Administration, University of Navarra.
    38. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    39. Barassi, Marco & Horvath, Lajos & Zhao, Yuqian, 2018. "Change Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," MPRA Paper 87837, University Library of Munich, Germany.
    40. Žikica Lukić & Bojana Milošević, 2024. "Change-point analysis for matrix data: the empirical Hankel transform approach," Statistical Papers, Springer, vol. 65(9), pages 5955-5980, December.
    41. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
    42. Ali Babikir & Rangan Gupta & Chance Mwabutwa & Emmanuel Owusu-Sekyere, 2010. "Structural Breaks and GARCH Models of Stock Return Volatility: The Case of South Africa," Working Papers 201030, University of Pretoria, Department of Economics.
    43. Arago-Manzana, Vicent & Fernandez-Izquierdo, Maria Angeles, 2007. "Influence of structural changes in transmission of information between stock markets: A European empirical study," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 112-124, April.
    44. Grote, Claudia & Bertram, Philip, 2015. "A comparative Study of Volatility Breaks," Hannover Economic Papers (HEP) dp-558, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    45. Juncal Cunado Eizaguirre & Javier Gomez Biscarri & Fernando Perez de Gracia Hidalgo, 2009. "Financial liberalization, stock market volatility and outliers in emerging economies," Applied Financial Economics, Taylor & Francis Journals, vol. 19(10), pages 809-823.
    46. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
    47. Evzen Kocenda, 2001. "Detecting Structural Breaks: Exchange Rates in Transition Economies," Development and Comp Systems 0012009, University Library of Munich, Germany.
    48. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    49. Bock, David, 2007. "Evaluations of likelihood based surveillance of volatility," Research Reports 2007:9, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    50. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    51. Tule, Moses K. & Ndako, Umar B. & Onipede, Samuel F., 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, Elsevier, vol. 35(C), pages 57-65.
    52. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
    53. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    54. Berkes, Istvan & Horváth, Lajos & Kokoszka, Piotr, 2004. "Testing for parameter constancy in GARCH(p,q) models," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 263-273, December.
    55. Veiga, Helena, 2006. "Are feedback factors important in modelling financial data?," DES - Working Papers. Statistics and Econometrics. WS ws060101, Universidad Carlos III de Madrid. Departamento de Estadística.
    56. Han, Young Wook, 2005. "Long memory volatility dependency, temporal aggregation and the Korean currency crisis: the role of a high frequency Korean won (KRW)-US dollar ($) exchange rate," Japan and the World Economy, Elsevier, vol. 17(1), pages 97-109, January.
    57. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    58. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    59. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. ""Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series"," IREA Working Papers 202309, University of Barcelona, Research Institute of Applied Economics, revised Jul 2023.
    60. Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).
    61. Petracchi, Cosimo, 2022. "The Mussa puzzle: A generalization," European Economic Review, Elsevier, vol. 149(C).
    62. Ghysels, Eric & Sohn, Bumjean, 2009. "Which power variation predicts volatility well?," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 686-700, September.
    63. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Discussion Paper 2007-35, Tilburg University, Center for Economic Research.
    64. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    65. John M. Maheu & Thomas H. McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Paper series 19_07, Rimini Centre for Economic Analysis.
    66. Sanjeeta Shirodkar & Guntur Anjana Raju, 2021. "Futures Trading, Spot Price Volatility and Structural Breaks: Evidence from Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 230-239.
    67. Karoglou, Michail & Morley, Bruce, 2012. "Purchasing power parity and structural instability in the US/UK exchange rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 958-972.
    68. Zhang, Dayong & Dickinson, David & Barassi, Marco, 2008. "Volatility Switching in Shanghai Stock Exchange: Does regulation help reduce volatility?," MPRA Paper 70352, University Library of Munich, Germany.
    69. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    70. Daniel Smith, 2008. "Testing for structural breaks in GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 845-862.
    71. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
    72. BAUWENS, Luc & DE BACKER, Bruno & DUFAYS, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: application to GARCH models," LIDAM Reprints CORE 2641, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    73. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    74. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    75. Okur, Mustafa & Cevik, Emrah Ismail, 2013. "Testing intraday volatility spillovers in Turkish capital markets: evidence from ISE," MPRA Paper 71477, University Library of Munich, Germany, revised 2013.
    76. Wang, Xinyu & Luo, Yi & Wang, Zhuqing & Xu, Yan & Wu, Congxin, 2021. "The impact of economic policy uncertainty on volatility of China’s financial stocks: An empirical analysis," Finance Research Letters, Elsevier, vol. 39(C).
    77. Lei Pan & Vinod Mishra, 2016. "Stock Market Development and Economic Growth: Empirical Evidence from China," Monash Economics Working Papers 16-16, Monash University, Department of Economics.
    78. Gębka, Bartosz & Karoglou, Michail, 2013. "Have the GIPSI settled down? Breaks and multivariate stochastic volatility models for, and not against, the European financial integration," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3639-3653.
    79. Adnen Ben Nasr & Mohamed Boutahar & Abdelwahed Trabelsi, 2010. "Fractionally integrated time varying GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 399-430, August.
    80. Galeano, Pedro & Wied, Dominik, 2014. "Multiple break detection in the correlation structure of random variables," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 262-282.
    81. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    82. Adams, Zeno & Fuess, Roland & Glueck, Thorsten, 2016. "Are Correlations Constant? Empirical and Theoretical Results on Popular Correlation Models in Finance," Working Papers on Finance 1613, University of St. Gallen, School of Finance.
    83. Meligkotsidou, Loukia & Tzavalis, Elias & Vrontos, Ioannis, 2017. "On Bayesian analysis and unit root testing for autoregressive models in the presence of multiple structural breaks," Econometrics and Statistics, Elsevier, vol. 4(C), pages 70-90.
    84. Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
    85. Fryzlewicz, Piotr & Oh, H. S., 2011. "Thick pen transformation for time series," LSE Research Online Documents on Economics 37663, London School of Economics and Political Science, LSE Library.
    86. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2015. "Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate," Energy Economics, Elsevier, vol. 48(C), pages 46-60.
    87. Efe Çağlar Çağli & Pinar Evrim Mandaci & Pinar Hakan Kahyaoğlu, 2011. "Volatility Shifts and Persistence in Variance: Evidence from the Sector Indices of Istanbul Stock Exchange," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 4(3), pages 119-140, December.
    88. Wang, Xinyu & Qi, Zikang & Huang, Jianglu, 2023. "How do monetary shock, financial crisis, and quotation reform affect the long memory of exchange rate volatility? Evidence from major currencies," Economic Modelling, Elsevier, vol. 120(C).
    89. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.
    90. Roberta Colavecchio & Michael Funke, 2007. "Volatility dependence across Asia-Pacific on-shore and off-shore U.S. dollar futures markets," Quantitative Macroeconomics Working Papers 20708, Hamburg University, Department of Economics.
    91. Nauro F. Campos & Menelaos G. Karanasos & Michail Karoglou & Panagiotis Koutroumpis & Constantin Zopounidis & Apostolos Christopoulos, 2022. "Apocalypse now, apocalypse when? Economic growth and structural breaks in Argentina (1886–2003)," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(1), pages 3-32, January.
    92. Ralf Becker & Adam Clements, 2007. "Forecasting stock market volatility conditional on macroeconomic conditions," NCER Working Paper Series 18, National Centre for Econometric Research.
    93. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    94. Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
    95. Huang, MeiChi, 2014. "Bubble-like housing boom–bust cycles: Evidence from the predictive power of households’ expectations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 2-16.
    96. Kostyrka, Andreï & Malakhov, Dmitry, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    97. Panicos Demetriades & Michaeil Karoglou & Siong Hook Law, 2007. "Financial Liberalisation and Breaks in Stock Market Volatility: Evidence from East Asia," Money Macro and Finance (MMF) Research Group Conference 2006 162, Money Macro and Finance Research Group.
    98. Wang, Zijin & Chen, Peimin & Liu, Peng & Wu, Chunchi, 2024. "Volatility forecasts by clustering: Applications for VaR estimation," International Review of Economics & Finance, Elsevier, vol. 94(C).
    99. Thomas Windberger & Achim Zeileis, 2011. "Structural Breaks in Inflation Dynamics within the European Monetary Union," Working Papers 2011-12, Faculty of Economics and Statistics, Universität Innsbruck.
    100. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    101. Taewook Lee & Moosup Kim & Changryong Baek, 2015. "Tests for Volatility Shifts in Garch Against Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 127-153, March.
    102. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    103. Pablo Mendieta Ossio & Sergio Cerezo Aguirre & Javier Cossío Medinacelli, 2009. "¿La inflación está de vuelta en Sudamérica?. Choques exógenos, expectativas y credibilidad de la política monetaria," Revista de Análisis del BCB, Banco Central de Bolivia, vol. 11(1), pages 111-146, December.
    104. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Other publications TiSEM a5a7b05f-5f1f-46ed-8ce8-5, Tilburg University, School of Economics and Management.
    105. Stanislav Anatolyev & Grigory Kosenok, 2011. "Sequential Testing with Uniformly Distributed Size," Working Papers w0123, New Economic School (NES).
    106. Charles, Amélie & Darné, Olivier & Pop, Adrian, 2015. "Risk and ethical investment: Empirical evidence from Dow Jones Islamic indexes," Research in International Business and Finance, Elsevier, vol. 35(C), pages 33-56.
    107. Agata Lozinskaia & Anastasiia Saltykova, 2019. "Fundamental Factors Affecting The Moex Russia Index: Structural Break Detection In A Long-Term Time Series," HSE Working papers WP BRP 77/FE/2019, National Research University Higher School of Economics.
    108. Sebastian Opitz & Alexander Szimayer, 2018. "What drives flight to quality?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 529-571, November.
    109. Werner, Thomas & Stapf, Jelena, 2003. "How wacky is the DAX? The changing structure of German stock market volatility," Discussion Paper Series 1: Economic Studies 2003,18, Deutsche Bundesbank.
    110. Juncal Cunado & Soojin Jo & Fernando Perez de Gracia, 2015. "Revisiting the Macroeconomic Impact of Oil Shocks in Asian Economies," Staff Working Papers 15-23, Bank of Canada.
    111. Giammarino, Flavia & Barrieu, Pauline, 2009. "A semiparametric model for the systematic factors of portfolio credit risk premia," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 655-670, September.
    112. Quynh Van Nong & Chi Tim Ng, 2021. "Clustering of subsample means based on pairwise L1 regularized empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 135-174, February.
    113. Guillermo Benavides & Carlos Capistrán, 2009. "Una nota sobre las volatilidades de la tasa de interés y del tipo de cambio según diferentes instrumentos de política monetaria: México 1998-2008," Monetaria, CEMLA, vol. 0(3), pages 391-412, octubre-d.
    114. Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
    115. Werker, Bas J M & Andreou, Elena, 2013. "Residual-based Rank Specification Tests for AR-GARCH type models," CEPR Discussion Papers 9583, C.E.P.R. Discussion Papers.
    116. Calvo-Gonzalez, Oscar & Shankar, Rashmi & Trezzi, Riccardo, 2010. "Are commodity prices more volatile now ? a long-run perspective," Policy Research Working Paper Series 5460, The World Bank.
    117. Cosimo Petracchi, 2021. "The Mussa Puzzle: A Generalization," Working Papers 2021-001, Brown University, Department of Economics.
    118. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    119. Karanasos, Menelaos & Yfanti, Stavroula & Karoglou, Michail, 2016. "Multivariate FIAPARCH modelling of financial markets with dynamic correlations in times of crisis," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 332-349.
    120. Eric Hillebrand, 2005. "Overlaying Time Scales in Financial Volatility Data," Econometrics 0501015, University Library of Munich, Germany.
    121. Gawon Yoon, 2011. "Changing volatility of long-term UK interest rates during Pax Britannica," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 69-74.
    122. Javier Pereda, 2009. "Estimación de la curva de rendimiento para el Perú y su uso para el análisis monetario," Monetaria, CEMLA, vol. 0(3), pages 413-450, octubre-d.
    123. Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
    124. Kim, Moosup & Lee, Taewook & Noh, Jungsik & Baek, Changryong, 2014. "Quasi-maximum likelihood estimation for multiple volatility shifts," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 50-60.
    125. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    126. Bartosz Gębka & Michail Karoglou, 2013. "Is there life in the old dogs yet? Making break-tests work on financial contagion," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 485-507, April.
    127. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    128. Michail Karoglou & Panicos Demetriades & Siong Law, 2011. "One date, one break?," Empirical Economics, Springer, vol. 41(1), pages 7-24, August.
    129. Mansour Khalili Araghi & Majid Mirzaee Ghazani, 2015. "Abrupt Changes in Volatility: Evidence from TEPIX Index in Tehran Stock Exchange," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(3), pages 377-393, Autumn.
    130. Broto, Carmen, 2011. "Inflation targeting in Latin America: Empirical analysis using GARCH models," Economic Modelling, Elsevier, vol. 28(3), pages 1424-1434, May.
    131. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    132. Bugge, Sebastian A. & Guttormsen, Haakon J. & Molnár, Peter & Ringdal, Martin, 2016. "Implied volatility index for the Norwegian equity market," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 133-141.
    133. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    134. Lavko, Matus & Klein, Tony & Walther, Thomas, 2023. "Reinforcement Learning and Portfolio Allocation: Challenging Traditional Allocation Methods," QBS Working Paper Series 2023/01, Queen's University Belfast, Queen's Business School.
    135. S Coleman & M Karoglou, 2010. "Monetary Variability and Monetary Variables in the Franc Zone," Economic Issues Journal Articles, Economic Issues, vol. 15(2), pages 17-48, September.
    136. Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," Working Papers hal-04140857, HAL.
    137. Haipeng Xing & Hongsong Yuan & Sichen Zhou, 2017. "A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 44-60, May.
    138. Sang Hoon Kang & SEONG-MIN YOON, 2008. "Asymmetry and Long Memory Features in Volatility: Evidence From Korean Stock Market," Korean Economic Review, Korean Economic Association, vol. 24, pages 383-412.
    139. Rakesh Bissoondeeal & Michail Karoglou & Andy Mullineux, 2014. "Breaks in the UK Household Sector Money Demand Function," Manchester School, University of Manchester, vol. 82, pages 47-68, December.
    140. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    141. Farooq Malik, 2015. "Revisiting the relationship between risk and return," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 25-40, January.
    142. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    143. Sylvia Gottschalk, 2023. "From Black Wednesday to Brexit: Macroeconomic shocks and correlations of equity returns in France, Germany, Italy, Spain, and the United Kingdom," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2843-2873, July.
    144. Sinem Derindere KOSEOGLU & Emrah Ismail CEVIK, 2013. "Testing for Causality in Mean and Variance between the Stock Market and the Foreign Exchange Market: An Application to the Major Central and Eastern European Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(1), pages 65-86, March.
    145. Robert B. Durand & Markus Junker & Alex Szimayer, 2010. "The flight‐to‐quality effect: a copula‐based analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 50(2), pages 281-299, June.
    146. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    147. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    148. Robert Akunga & Ahmad Hassan Ahmad & Simeon Coleman, 2023. "Financial market integration in sub‐Saharan Africa: How important is contagion?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3637-3653, October.
    149. Michael Princ, 2016. "Structural Distress Index: Structural Break Analysis of the Czech and Polish Stock Markets," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2016(3), pages 125-137.
    150. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    151. Andreu Sansó & Vicent Aragó & Josep Lluís Carrion, 2003. "Testing for Changes in the Unconditional Variance of Financial Time Series," DEA Working Papers 5, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    152. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Intra- and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index futures," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 96-114.
    153. Benavides Guillermo & Capistrán Carlos, 2009. "A Note on the Volatilities of the Interest Rate and the Exchange Rate Under Different Monetary Policy Instruments: Mexico 1998-2008," Working Papers 2009-10, Banco de México.
    154. BenSaïda, Ahmed, 2015. "The frequency of regime switching in financial market volatility," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 63-79.

  24. Elena Andreou & Eric Ghysels, 2000. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation and Empirical Results," CIRANO Working Papers 2000s-19, CIRANO.

    Cited by:

    1. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    3. John P. Owens & Douglas G. Steigerwald, 2006. "Noise reduced realized volatility: a kalman filter approach," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 211-227, Emerald Group Publishing Limited.
    4. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    6. John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
    7. Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," EconomiX Working Papers 2009-33, University of Paris Nanterre, EconomiX.
    8. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    9. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    10. John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
    11. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    12. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Ginger Wu, 2006. "Realized Beta: Persistence and Predictability," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 1-39, Emerald Group Publishing Limited.
    14. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    15. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    16. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    17. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    18. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    19. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
    20. Bent Jesper Christensen & Rasmus Tangsgaard Varneskov, 2021. "Dynamic Global Currency Hedging [Arbitrage in the Foreign Exchange Market: Turning on the Microscope]," Journal of Financial Econometrics, Oxford University Press, vol. 19(1), pages 97-127.
    21. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    22. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    23. Nour Meddahi, 2001. "A Theoretical Comparison Between Integrated and Realized Volatilities," CIRANO Working Papers 2001s-71, CIRANO.
    24. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    25. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    26. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    27. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    28. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    29. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    30. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
    31. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    32. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    33. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.
    34. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    35. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    36. Bannouh, K. & van Dijk, D.J.C. & Martens, M.P.E., 2008. "Range-based covariance estimation using high-frequency data: The realized co-range," Econometric Institute Research Papers EI 2007-53, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    37. Ceylan, Ozcan, 2012. "Time-Varying Volatility Asymmetry: A Conditioned HAR-RV(CJ) EGARCH-M Model," GIAM Working Papers 12-4, Galatasaray University Economic Research Center.
    38. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    39. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    40. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    41. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    42. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    43. Hautsch, Nikolaus & Kyj, Lada M. & Malec, Peter, 2011. "The merit of high-frequency data in portfolio allocation," SFB 649 Discussion Papers 2011-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    44. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2002. "Analytic Evaluation of Volatility Forecasts," CIRANO Working Papers 2002s-90, CIRANO.
    45. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    46. Michael Haliassos, 2002. "Stockholding: Recent Lessons from Theory and Computations," University of Cyprus Working Papers in Economics 0206, University of Cyprus Department of Economics.
    47. Qianqiu Liu, 2009. "On portfolio optimization: How and when do we benefit from high-frequency data?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 560-582.
    48. Yu, Chao & Fang, Yue & Zhao, Xujie & Zhang, Bo, 2013. "Kernel filtering of spot volatility in presence of Lévy jumps and market microstructure noise," MPRA Paper 63293, University Library of Munich, Germany, revised 10 Mar 2014.
    49. Andrey Rafalson, 2012. "Bootstrap inference about integrated volatility (in Russian)," Quantile, Quantile, issue 10, pages 91-108, December.
    50. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model," Working Papers on Finance 1211, University of St. Gallen, School of Finance.
    51. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    52. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
    53. Wu, Liuren, 2011. "Variance dynamics: Joint evidence from options and high-frequency returns," Journal of Econometrics, Elsevier, vol. 160(1), pages 280-287, January.
    54. Bannouh, K. & Martens, M.P.E. & Oomen, R.C.A. & van Dijk, D.J.C., 2012. "Realized mixed-frequency factor models for vast dimensional covariance estimation," ERIM Report Series Research in Management ERS-2012-017-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    55. Dipankor Coondoo & Paramita Mukherjee, 2004. "Components of volatility and their empirical measures: a note," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1313-1318.
    56. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    57. Jia, Zhanliang & Cui, Meilan & Li, Handong, 2012. "Research on the relationship between the multifractality and long memory of realized volatility in the SSECI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 740-749.
    58. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    59. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    60. Werner, Thomas & Stapf, Jelena, 2003. "How wacky is the DAX? The changing structure of German stock market volatility," Discussion Paper Series 1: Economic Studies 2003,18, Deutsche Bundesbank.
    61. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    62. Ahadzie, Richard Mawulawoe & Jeyasreedharan, Nagaratnam, 2020. "Trading volume and realized higher-order moments in the Australian stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    63. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Oxford University Press, vol. 10(2), pages 354-389, 2012 06.
    64. Dennis Kristensen, 2007. "Nonparametric Filtering of the Realised Spot Volatility: A Kernel-based Approach," CREATES Research Papers 2007-02, Department of Economics and Business Economics, Aarhus University.
    65. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    66. Richard Hawkes & Paresh Date, 2007. "Medium‐term horizon volatility forecasting: A comparative study," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(6), pages 465-481, November.
    67. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    68. Ghysels, Eric, 2014. "Factor Analysis with Large Panels of Volatility Proxies," CEPR Discussion Papers 10034, C.E.P.R. Discussion Papers.
    69. Denisa BANULESCU-RADU & Laurent FERRARA & Clément MARSILLI, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," LEO Working Papers / DR LEO 2710, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    70. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    71. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    72. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R. & Rothman, Philip, 2010. "An empirical investigation of stock market behavior in the Middle East and North Africa," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 413-427, June.
    73. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    74. Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," Working Papers hal-04140857, HAL.
    75. Asger Lunde & Peter Reinhard Hansen, 2004. "Realized Variance and IID Market Microstructure Noise," Econometric Society 2004 North American Summer Meetings 526, Econometric Society.
    76. Zhou, Dong-hai & Liu, Xiao-xing, 2023. "Do world stock markets “jump” together? A measure of high-frequency volatility risk spillover networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    77. Antoine Bouveret & Martin Haferkorn & Gaetano Marseglia & Onofrio Panzarino, 2022. "Flash crashes on sovereign bond markets – EU evidence," Mercati, infrastrutture, sistemi di pagamento (Markets, Infrastructures, Payment Systems) 20, Bank of Italy, Directorate General for Markets and Payment System.
    78. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    79. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
    80. Zhou, Dong-hai & Liu, Xiao-xing & Tang, Chun & Yang, Guang-yi, 2023. "Time-varying risk spillovers in Chinese stock market – New evidence from high-frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    81. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.
    82. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

  25. Peter Christoffersen & Eric Ghysels & Norman Swanson, 2000. "Let's Get "Real" About Using Economic Data," Econometric Society World Congress 2000 Contributed Papers 1004, Econometric Society.

    Cited by:

    1. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    2. Jon Faust & John H. Rogers & Jonathan H. Wright, 2001. "Exchange rate forecasting: the errors we've really made," International Finance Discussion Papers 714, Board of Governors of the Federal Reserve System (U.S.).
    3. Bernard Sinclair-Desgagné, 2001. "Incentives in Common Agency," CIRANO Working Papers 2001s-66, CIRANO.
    4. mamatzakis, e & Christodoulakis, G, 2013. "Behavioural Asymmetries in the G7 Foreign Exchange Market," MPRA Paper 51615, University Library of Munich, Germany.
    5. Kizys, Renatas & Pierdzioch, Christian, 2011. "The changing sensitivity of realized portfolio betas to U.S. output growth: An analysis based on real-time data," Journal of Economics and Business, Elsevier, vol. 63(3), pages 168-186, May.
    6. Owen Lamont, 1999. "Economic Tracking Portfolios," NBER Working Papers 7055, National Bureau of Economic Research, Inc.
    7. Christoffersen, Peter & Errunza, Vihang, 2000. "Towards a global financial architecture: capital mobility and risk management issues," Emerging Markets Review, Elsevier, vol. 1(1), pages 3-20, May.
    8. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    9. Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
    10. Dean Croushore, 2008. "Frontiers of real-time data analysis," Working Papers 08-4, Federal Reserve Bank of Philadelphia.
    11. Richard Lajeunesse & Paul Lanoie & Michel Patry, 2001. "Environmental Regulation and Productivity: New Findings on the Porter Analysis," CIRANO Working Papers 2001s-53, CIRANO.
    12. Vrugt, Evert B., 2009. "U.S. and Japanese macroeconomic news and stock market volatility in Asia-Pacific," Pacific-Basin Finance Journal, Elsevier, vol. 17(5), pages 611-627, November.
    13. Ngo Van Long & Koji Shimomura, 2002. "Relative Wealth, Status Seeking, and Catching Up," CIRANO Working Papers 2002s-09, CIRANO.
    14. Julie Doonan & Paul Lanoie & Benoit Laplante, 2002. "Environmental Performance of Canadian Pulp and Paper Plants: Why Some Do Well and Others Do Not ?," CIRANO Working Papers 2002s-24, CIRANO.
    15. Junttila, Juha & Kinnunen, Heli, 2004. "The performance of economic tracking portfolios in an IT-intensive stock market," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(4), pages 601-623, September.
    16. Padrón, Yaiza García & Boza, Juan García, 2006. "Which are the Risk Factors in the Pricing of Personal Pension in Spain?," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 60(2), November.
    17. Richard G. Anderson, 2006. "Replicability, real-time data, and the science of economic research: FRED, ALFRED, and VDC," Review, Federal Reserve Bank of St. Louis, vol. 88(Jan), pages 81-93.
    18. Michael Pedersen, 2010. "Extracting GDP Signals From the Monthly Indicator of Economic Activity: Evidence From Chilean Real-Time Data," Working Papers Central Bank of Chile 595, Central Bank of Chile.
    19. John W. Galbraith & Serguei Zernov & Victoria Zinde-Walsh, 2001. "Conditional Quantiles of Volatility in Equity Index and Foreign Exchange Data," CIRANO Working Papers 2001s-61, CIRANO.
    20. Vázquez, Jesús & María-Dolores, Ramón & Londoño, Juan M., 2012. "The Effect of Data Revisions on the Basic New Keynesian Model," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 235-249.

  26. Eric Ghysels & Junghoon Seon, 2000. "The Asian Financial Crisis: The Role of Derivative Securities Trading and Foreign Investors," CIRANO Working Papers 2000s-11, CIRANO.

    Cited by:

    1. Röthig, Andreas, 2004. "Currency futures and currency crises," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 4022, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Röthig, Andreas, 2004. "Currency Futures and Currency Crises," Darmstadt Discussion Papers in Economics 136, Darmstadt University of Technology, Department of Law and Economics.
    3. D. Sornette & W. -X. Zhou, 2003. "Evidence of Fueling of the 2000 New Economy Bubble by Foreign Capital Inflow: Implications for the Future of the US Economy and its Stock Market," Papers cond-mat/0306496, arXiv.org.

  27. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.

    Cited by:

    1. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    3. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    4. John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
    5. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
    6. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2011. "Can standard preferences explain the prices of out-of-the-money S&P 500 put options?," Working Paper Series WP-2011-11, Federal Reserve Bank of Chicago.
    7. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
    8. Gallant, A. Ronald & Tauchen, George, 2002. "Simulated Score Methods and Indirect Inference for Continuous-time Models," Working Papers 02-09, Duke University, Department of Economics.
    9. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    10. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    11. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    12. Daal, Elton & Naka, Atsuyuki & Yu, Jung-Suk, 2006. "Volatility Clustering, Leverage Effects, and Jump Dynamics in the US and Emerging Asian Equity Markets," Working Papers 2005-03, University of New Orleans, Department of Economics and Finance.
    13. Rodrigue Oeuvray & Pascal Junod, 2013. "On time scaling of semivariance in a jump-diffusion process," Papers 1311.1122, arXiv.org.
    14. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    15. R. Oeuvray & P. Junod, 2015. "A practical approach to semideviation and its time scaling in a jump-diffusion process," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 809-827, May.
    16. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
    17. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    18. Tyler J. VanderWeele, 2007. "The volatility effects of nontrading for stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(13), pages 1037-1041.
    19. Uppal, Raman & Das, Sanjiv Ranjan, 2002. "Systemic Risk and International Portfolio Choice," CEPR Discussion Papers 3305, C.E.P.R. Discussion Papers.
    20. Rodríguez Nava Abigail & Francisco Venegas Martínez, 2010. "Efectos del tipo de cambio sobre el déficit público: modelos de simulación Monte Carlo," Contaduría y Administración, Accounting and Management, vol. 55(3), pages 11-40, septiembr.
    21. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    22. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    23. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.

  28. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.

    Cited by:

    1. John W. Galbraith, 1999. "Content Horizons For Forecasts Of Economic Time Series," Departmental Working Papers 1999-01, McGill University, Department of Economics.
    2. Psaradakis, Zacharias, 2000. "Bootstrap tests for unit roots in seasonal autoregressive models," Statistics & Probability Letters, Elsevier, vol. 50(4), pages 389-395, December.
    3. Ngo Van Long & Antoine Soubeyran, 1999. "Cost Manipulation Games in Oligopoly, with Costs of Manipulating," CIRANO Working Papers 99s-13, CIRANO.
    4. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    5. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    6. Jérôme Foulon & Paul Lanoie & Benoit Laplante, 1999. "Incentives for Pollution Control: Regulation or (and?) Information," CIRANO Working Papers 99s-11, CIRANO.
    7. Patrice Roussel & Michel Tremblay, 1999. "Modelling the Role of Organizational Justice: Effects on Satisfaction and Unionization Propensity of Canadian Managers," CIRANO Working Papers 99s-16, CIRANO.

  29. Mouna Cherkaoui & Eric Ghysels, 1999. "Emerging Markets and Trading Costs," CIRANO Working Papers 99s-04, CIRANO.

    Cited by:

    1. FERROUHI, El Mehdi & EZZAHID, Elhadj, 2013. "Trading mechanisms, return’s volatility and efficiency in the Casablanca Stock Exchange," MPRA Paper 77322, University Library of Munich, Germany.
    2. Ghysels, Eric & Cherkaoui, Mouna, 2003. "Emerging markets and trading costs: lessons from Casablanca," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 169-198, February.

  30. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.

    Cited by:

    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," Center for Financial Institutions Working Papers 99-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.
    3. Gabriele Fiorentini & Angel León & Gonzalo Rubio, "undated". "Short-term options with stochastic volatility: Estimation and empirical performance," Studies on the Spanish Economy 02, FEDEA.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.

  31. Eric Ghysels & Serena Ng, 1998. "A Semi-Parametric Factor Model of Interest Rates and Tests of the Affine Term Structure," Boston College Working Papers in Economics 403, Boston College Department of Economics.

    Cited by:

    1. Jagannathan, Ravi & Kaplin, Andrew & Sun, Steve, 2003. "An evaluation of multi-factor CIR models using LIBOR, swap rates, and cap and swaption prices," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 113-146.
    2. D H Kim, 2005. "Nonlinearity in the Term Structure," Centre for Growth and Business Cycle Research Discussion Paper Series 51, Economics, The University of Manchester.
    3. Zongwu Cai & Jiazi Chen & Linlin Niu, 2021. "A Semiparametric Model for Bond Pricing with Life Cycle Fundamental," Working Papers 2021-01-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
    5. D H Kim, 2004. "Nonlinearity in the Term Structure," Economics Discussion Paper Series 0401, Economics, The University of Manchester.
    6. Hoi Wong & Tsz Wong, 2007. "Reduced-form Models with Regime Switching: An Empirical Analysis for Corporate Bonds," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 229-253, September.
    7. Zongwu Cai & Jiazi Chen & Linlin Liu, 2021. "Estimating Impact of Age Distribution on Bond Pricing: A Semiparametric Functional Data Analysis Approach," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202102, University of Kansas, Department of Economics, revised Jan 2021.
    8. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    9. Teresa Corzo Santamaría & Javier Gómez Biscarri, 2004. "Nonparametric Estimation of Convergence of Interest Rates: Effects on Bond Pricing," Faculty Working Papers 03/04, School of Economics and Business Administration, University of Navarra.
    10. Massimo Guidolin & Daniel L. Thornton, 2010. "Predictions of short-term rates and the expectations hypothesis," Working Papers 2010-013, Federal Reserve Bank of St. Louis.
    11. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    12. Michael R. Wickens & Chiona Balfoussia, 2004. "Macroeconomic Sources of Risk in the Term Structure," CEIS Research Paper 61, Tor Vergata University, CEIS.
    13. Bams, Dennis & Schotman, Peter C., 2003. "Direct estimation of the risk neutral factor dynamics of Gaussian term structure models," Journal of Econometrics, Elsevier, vol. 117(1), pages 179-206, November.
    14. Dong Heon Kim, 2004. "Nonlinearity in the Term Structure," Econometric Society 2004 Far Eastern Meetings 440, Econometric Society.

  32. Eric Ghysels & Alain Guay, 1998. "Structural Change Tests for Simulated Method of Moments," CIRANO Working Papers 98s-19, CIRANO.

    Cited by:

    1. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    2. Anindya Biswas & Biswajit Mandal, 2016. "Estimating Preference Parameters From Stock Returns Using Simulated Method Of Moments," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-13, March.
    3. Prosper Dovonon & Alastair R. Hall, 2017. "The Asymptotic Properties of GMM and Indirect Inference Under Second-Order Identification," Economics Discussion Paper Series 1705, Economics, The University of Manchester.
    4. Dovonon, Prosper & Hall, Alastair R., 2018. "The asymptotic properties of GMM and indirect inference under second-order identification," Journal of Econometrics, Elsevier, vol. 205(1), pages 76-111.
    5. Sen, Amit & Hall, Alastair, 1999. "Two further aspects of some new tests for structural stability," Structural Change and Economic Dynamics, Elsevier, vol. 10(3-4), pages 431-443, December.
    6. Ghysels, Eric & Guay, Alain, 2004. "Testing For Structural Change In The Presence Of Auxiliary Models," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1168-1202, December.
    7. Alain Guay & Olivier Scaillet, 1999. "Indirect Inference, Nuisance Parameter and Threshold Moving Average," Cahiers de recherche CREFE / CREFE Working Papers 95, CREFE, Université du Québec à Montréal.
    8. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.

  33. Charles Cao & Eric Ghysels & Frank Hatheway, 1998. "Why Is the Bid Price Greater than the Ask? Price Discovery during the Nasdaq Pre-Opening," CIRANO Working Papers 98s-14, CIRANO.

    Cited by:

    1. Medrano, Luis Angel & Vives, Xavier, 2001. "Strategic Behavior and Price Discovery," RAND Journal of Economics, The RAND Corporation, vol. 32(2), pages 221-248, Summer.
    2. Bruno Biais & Pierre Hillion & Chester Spatt, 1999. "Price Discovery and Learning during the Preopening Period in the Paris Bourse," Journal of Political Economy, University of Chicago Press, vol. 107(6), pages 1218-1248, December.

  34. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.

    Cited by:

    1. Peter Christoffersen & Eric Ghysels & Norman Swanson, 2000. "Let's Get "Real" About Using Economic Data," Econometric Society World Congress 2000 Contributed Papers 1004, Econometric Society.
    2. Andres Fernandez & Norman R. Swanson, 2009. "Real-time datasets really do make a difference: definitional change, data release, and forecasting," Working Papers 09-28, Federal Reserve Bank of Philadelphia.
    3. Sharon Kozicki, 1999. "How useful are Taylor rules for monetary policy?," Economic Review, Federal Reserve Bank of Kansas City, vol. 84(Q II), pages 5-33.
    4. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    5. Söderström, Ulf, 1999. "Should central banks be more aggressive?," SSE/EFI Working Paper Series in Economics and Finance 309, Stockholm School of Economics.
    6. Dean Croushore & Tom Stark, 1999. "A real-time data set for marcoeconomists: does the data vintage matter?," Working Papers 99-21, Federal Reserve Bank of Philadelphia.
    7. Felipe Morandé Lavín & Mauricio Tejada, 2008. "Sources of Uncertainty for Conducting Monetary Policy in Chile," Working Papers wp285, University of Chile, Department of Economics.
    8. Dean Croushore & Tom Stark, 2002. "Is macroeconomic research robust to alternative data sets?," Working Papers 02-3, Federal Reserve Bank of Philadelphia.
    9. Dean Croushore & Tom Stark, 2000. "A real-time data set for macroeconomists: does data vintage matter for forecasting?," Working Papers 00-6, Federal Reserve Bank of Philadelphia.
    10. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
    11. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.

  35. Eric Ghysels & Valentin Patilea & Eric Renault & Olivier Torrès, 1997. "Nonparametric Methods and Option Pricing," CIRANO Working Papers 97s-19, CIRANO.

    Cited by:

    1. Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
    2. René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
    3. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    4. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Teng, Huei-wen, 2013. "State Price Densities implied from weather derivatives," SFB 649 Discussion Papers 2013-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    6. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.

  36. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1997. "Seasonal Adjustment and Volatility Dynamics," CIRANO Working Papers 97s-39, CIRANO.

    Cited by:

    1. Élise Cormier & Jean-Marc Suret, 1997. "Le régime d'épargne-actions du Québec : Vue d'ensemble et évaluation," CIRANO Working Papers 97s-16, CIRANO.
    2. Cayton, Peter Julian & Bersales, Lisa Grace, 2012. "Median-based seasonal adjustment in the presence of seasonal volatility," MPRA Paper 37146, University Library of Munich, Germany.
    3. Paraskevi Katsiampa & Kyriaki Begiazi, 2019. "An empirical analysis of the Scottish housing market by property type," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(4), pages 559-583, September.

  37. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.

    Cited by:

    1. Hautsch, Nikolaus & Pohlmeier, Winfried, 2001. "Econometric Analysis of Financial Transaction Data: Pitfalls and Opportunities," CoFE Discussion Papers 01/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Australasian Meetings 272, Econometric Society.
    3. Gerhard, Frank & Hautsch, Nikolaus, 1999. "Volatility Estimation on the Basis of Price Intensities," CoFE Discussion Papers 99/19, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
    5. Jose Montalvo, 1999. "Volume versus GARCH effects reconsidered: an application to the Spanish Government Bond Futures Market," Applied Financial Economics, Taylor & Francis Journals, vol. 9(5), pages 469-475.
    6. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. BAUWENS, Luc & GIOT, Pierre, 1998. "Asymmetric ACD models: introducing price information in ACD models with a two state transition model," LIDAM Discussion Papers CORE 1998044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Far Eastern Meetings 730, Econometric Society.
    9. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.

  38. René Garcia & Eric Ghysels, 1996. "Structural Change and Asset Pricing in Emerging Markets," CIRANO Working Papers 96s-34, CIRANO.

    Cited by:

    1. Bekaert, Geert & Harvey, Campbell R., 2003. "Emerging markets finance," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 3-56, February.
    2. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    3. Alexei Goriaev & Alexei Zabotkin, 2006. "Risks of investing in the Russian stock market: Lessons of the first decade," Working Papers w0077, New Economic School (NES).
    4. Sara Azher & Javed Iqbal, 2018. "Testing Conditional Asset Pricing in Pakistan: The Role of Value-at-risk and Illiquidity Factors," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 259-281, August.
    5. BONOMO, Marco & GARCIA, René, 1997. "Tests of Conditional Asset Pricing Models in the Brazilian Stock Market," Cahiers de recherche 9715, Universite de Montreal, Departement de sciences economiques.
    6. Barr, David G. & Priestley, Richard, 2004. "Expected returns, risk and the integration of international bond markets," Journal of International Money and Finance, Elsevier, vol. 23(1), pages 71-97, February.
    7. Raphael Markellos & Terence Mills, 2003. "Asset pricing dynamics," The European Journal of Finance, Taylor & Francis Journals, vol. 9(6), pages 533-556.
    8. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem & Arnold F. Shapiro & Michel Terraza, 2012. "Capital asset pricing model with fuzzy returns and hypothesis testing," Working Papers 12-33, LAMETA, Universtiy of Montpellier, revised Sep 2012.
    9. Jan, Yin-Ching & Chou, Peter Shyan-Rong & Hung, Mao-Wei, 2000. "Pacific Basin stock markets and international capital asset pricing," Global Finance Journal, Elsevier, vol. 11(1-2), pages 1-16.
    10. Abel, Ernest & Fletcher, Jonathan, 2004. "An empirical examination of UK emerging market unit trust performance," Emerging Markets Review, Elsevier, vol. 5(4), pages 389-408, December.
    11. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    12. Bekaert, Geert & Harvey, Campbell R. & Lumsdaine, Robin L., 2002. "Dating the integration of world equity markets," Journal of Financial Economics, Elsevier, vol. 65(2), pages 203-247, August.
    13. Gulnur Muradoglu & Hakan Berument & Kivilcim Metin, 1999. "Financial Crisis and Changes in Determinants of Risk and Return: An Empirical Investigation of an Emerging Market (ISE)," Multinational Finance Journal, Multinational Finance Journal, vol. 3(4), pages 223-252, December.
    14. Kodongo, Odongo & Ojah, Kalu, 2014. "The conditional pricing of currency and inflation risks in Africa's equity markets," MPRA Paper 56100, University Library of Munich, Germany.
    15. Iqbal, Javed & Brooks, Robert & Galagedera, Don U.A., 2010. "Testing conditional asset pricing models: An emerging market perspective," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 897-918, September.
    16. Kodjovi G. Assoe, 1998. "Regime-Switching in Emerging Stock Market Returns," Multinational Finance Journal, Multinational Finance Journal, vol. 2(2), pages 101-132, June.
    17. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Shapiro, A.F. & Terraza, M., 2014. "CAPM with fuzzy returns and hypothesis testing," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 40-57.
    18. Harry J. Turtle & Chengping Zhang, 2015. "Structural breaks and portfolio performance in global equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 909-922, June.
    19. Ramazan Genay & Faruk Seļuk & Brandon Whitcher, 2003. "Systematic risk and timescales," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 108-116.
    20. Shabir Ahmad Hakim & Zarinah Hamid & Ahamed Kameel Mydin Meera, 2016. "Capital Asset Pricing Model and Pricing of Islamic Financial Instruments نموذج تسعير الأصول الرأسمالية وتسعير الأدوات المالية الإسلامية," Journal of King Abdulaziz University: Islamic Economics, King Abdulaziz University, Islamic Economics Institute., vol. 29(1), pages 21-39, January.
    21. Hooker, Mark A., 2004. "Macroeconomic factors and emerging market equity returns: a Bayesian model selection approach," Emerging Markets Review, Elsevier, vol. 5(4), pages 379-387, December.
    22. Gencay, Ramazan & Selcuk, Faruk & Whitcher, Brandon, 2005. "Multiscale systematic risk," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 55-70, February.
    23. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    24. Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
    25. Henry Aray, 2006. "The Latin American and Spanish Stock markets," ThE Papers 06/12, Department of Economic Theory and Economic History of the University of Granada..
    26. Boyer, Marcel & Cherkaoui, Mouna & Ghysels, Eric, 1997. "L’intégration des marchés émergents et la modélisation des rendements des actifs risqués," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 311-330, mars-juin.
    27. Masih, Mansur & Alzahrani, Mohammed & Al-Titi, Omar, 2010. "Systematic risk and time scales: New evidence from an application of wavelet approach to the emerging Gulf stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 10-18, January.
    28. Kodongo, Odongo & Ojah, Kalu, 2014. "Conditional pricing of currency risk in Africa's equity markets," Emerging Markets Review, Elsevier, vol. 21(C), pages 133-155.
    29. Ho-Chuan Huang & Wan-hsiu Cheng, 2005. "Tests of the CAPM under structural changes," International Economic Journal, Taylor & Francis Journals, vol. 19(4), pages 523-541.
    30. Garcia, René, 1998. "Modèles d’évaluation des actifs financiers dans les marchés boursiers en émergence : identification des facteurs de risque et tests de changement structurel," L'Actualité Economique, Société Canadienne de Science Economique, vol. 74(3), pages 467-484, septembre.
    31. Atakan Yalçın & Nuri Ersşahin, 2011. "Does the Conditional CAPM Work? Evidence from the Istanbul Stock Exchange," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(4), pages 28-48, July.

  39. Peter Bossaert & Eric Ghysels & Christian Gouriéroux, 1996. "Arbitrage Based Pricing When Volatility Is Stochastic," CIRANO Working Papers 96s-20, CIRANO.

    Cited by:

    1. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    2. Bossaerts, Peter & Hillion, Pierre, 2003. "Local parametric analysis of derivatives pricing and hedging," Journal of Financial Markets, Elsevier, vol. 6(4), pages 573-605, August.
    3. German Rodikov & Nino Antulov-Fantulin, 2022. "Can LSTM outperform volatility-econometric models?," Papers 2202.11581, arXiv.org.
    4. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Dias, Fabio S. & Peters, Gareth W., 2021. "Option pricing with polynomial chaos expansion stochastic bridge interpolators and signed path dependence," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    7. Cartea, Álvaro & Meyer-Brandis, Thilo, 2009. "How Duration Between Trades of Underlying Securities Affects Option Prices," MPRA Paper 16179, University Library of Munich, Germany.
    8. Solomon Abayomi Olakojo, 2020. "A Markov‐switching analysis of Nigeria's business cycles: Are election cycles important?," African Development Review, African Development Bank, vol. 32(1), pages 67-79, March.
    9. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    10. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    11. Michael Weba, 2024. "Investment strategies based on forecasts are (almost) useless," Papers 2408.01772, arXiv.org.
    12. Isaenko, Sergey, 2023. "Trading strategies and the frequency of time-series," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 267-283.
    13. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    14. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Sivaprasad, Sheeja, 2021. "The impact of Covid-19 on G7 stock markets volatility: Evidence from a ST-HAR model," International Review of Financial Analysis, Elsevier, vol. 74(C).
    15. Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
    16. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

  40. Eric Ghysels & Serena Ng, 1996. "A Semi-Parametric Factor Model for Interest Rates," CIRANO Working Papers 96s-18, CIRANO.

    Cited by:

    1. GHYSELS, Eric & PATILEA, Valentin & RENAULT, Eric & TORRES, Olivier, 1997. "Nonparametric methods and option pricing," LIDAM Discussion Papers CORE 1997075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.

  41. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "American Options with Stochastic Dividends and Volatility: A Nonparametric Investigation," CIRANO Working Papers 96s-26, CIRANO.

    Cited by:

    1. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    2. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    3. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    4. Farid AitSahlia & Manisha Goswami & Suchandan Guha, 2010. "American option pricing under stochastic volatility: an efficient numerical approach," Computational Management Science, Springer, vol. 7(2), pages 171-187, April.
    5. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.
    6. R. S. Tunaru, 2018. "Dividend derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 63-81, January.
    7. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    8. Abraham Lioui, 2005. "Stochastic dividend yields and derivatives pricing in complete markets," Review of Derivatives Research, Springer, vol. 8(3), pages 151-175, December.
    9. GHYSELS, Eric & PATILEA, Valentin & RENAULT, Eric & TORRES, Olivier, 1997. "Nonparametric methods and option pricing," LIDAM Discussion Papers CORE 1997075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Chiu, Mei Choi & Wong, Hoi Ying & Zhao, Jing, 2015. "Commodity derivatives pricing with cointegration and stochastic covariances," European Journal of Operational Research, Elsevier, vol. 246(2), pages 476-486.
    11. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    12. Atmaz, Adem & Basak, Suleyman, 2019. "Option prices and costly short-selling," Journal of Financial Economics, Elsevier, vol. 134(1), pages 1-28.
    13. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    14. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
    15. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    16. René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
    17. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Rodriguez, J.C., 2007. "Option Pricing and Momentum," Discussion Paper 2007-93, Tilburg University, Center for Economic Research.
    19. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    20. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    21. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    22. George J. Jiang, 2002. "Testing Option Pricing Models with Stochastic Volatility, Random Jumps and Stochastic Interest Rates," International Review of Finance, International Review of Finance Ltd., vol. 3(3‐4), pages 233-272, September.
    23. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    24. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    25. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    26. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    27. Carl Chiarella & Jonathan Ziveyi, 2011. "Two Stochastic Volatility Processes - American Option Pricing," Research Paper Series 292, Quantitative Finance Research Centre, University of Technology, Sydney.
    28. Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
    29. Rodriguez, J.C., 2007. "Option Pricing and Momentum," Other publications TiSEM c3d95a76-1818-4543-87f5-b, Tilburg University, School of Economics and Management.
    30. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    31. Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary University of London, School of Economics and Finance.
    32. Biao Guo & Hai Lin, 2020. "Volatility and jump risk in option returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1767-1792, November.
    33. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    34. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    35. Lin, Yueh-Neng & Lin, Anchor Y., 2016. "Using VIX futures to hedge forward implied volatility risk," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 88-106.
    36. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    37. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
    38. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.

  42. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1996. "Kernel Autocorrelogram for Time Deformed Processes," CIRANO Working Papers 96s-19, CIRANO.

    Cited by:

    1. Christian Gourieroux & Gaëlle Le Fol, 1997. "Volatilités et mesures de risque," Post-Print halshs-00877048, HAL.

  43. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.

    Cited by:

    1. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    2. Jun Lu & Hiroshi Ohta, 2003. "A data and digital-contracts driven method for pricing complex derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 212-219.
    3. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "American Options with Stochastic Dividends and Volatility: A Nonparametric Investigation," CIRANO Working Papers 96s-26, CIRANO.
    4. GHYSELS, Eric & PATILEA, Valentin & RENAULT, Eric & TORRES, Olivier, 1997. "Nonparametric methods and option pricing," LIDAM Discussion Papers CORE 1997075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
    6. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    7. René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
    8. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Tze Leung Lai & Samuel Po-Shing Wong, 2007. "Combining domain knowledge and statistical models in time series analysis," Papers math/0702814, arXiv.org.
    10. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    11. Teresa Corzo Santamaría & Javier Gómez Biscarri, 2004. "Nonparametric Estimation of Convergence of Interest Rates: Effects on Bond Pricing," Faculty Working Papers 03/04, School of Economics and Business Administration, University of Navarra.
    12. Yu, Xisheng & Xie, Xiaoke, 2015. "Pricing American options: RNMs-constrained entropic least-squares approach," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 155-173.
    13. Yuji Yamada, 2012. "Properties of Optimal Smooth Functions in Additive Models for Hedging Multivariate Derivatives," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(2), pages 149-179, May.
    14. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    15. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    16. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
    17. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    18. J Lu & H Ohta, 2003. "Digital contracts-driven method for pricing complex derivatives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(9), pages 1002-1010, September.

  44. Eric Ghysels & Alain Guay & Alastair Hall, 1995. "Predictive Tests for Structural Change with Unknown Breakpoint," CIRANO Working Papers 95s-20, CIRANO.

    Cited by:

    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Alastair R. Hall & Yuyi Li & Chris D. Orme & Arthur Sinko, 2013. "Testing for Structural Instability in Moment Restriction Models: an Info-metric Approach," Economics Discussion Paper Series 1326, Economics, The University of Manchester.
    3. D.M. Nachane & Nishita Raje, 2007. "Financial Liberalisation and Monetary Policy," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 1(1), pages 47-83, March.
    4. Cuñado, J. & Gil-Alana, L.A. & Perez de Gracia, F., 2012. "Testing for persistent deviations of stock prices to dividends in the Nasdaq index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4675-4685.
    5. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    6. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    7. Luis F. Céspedes & Claudio Soto, 2007. "Credibility and Inflation Targeting in Chile," Central Banking, Analysis, and Economic Policies Book Series, in: Frederic S. Miskin & Klaus Schmidt-Hebbel & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Se (ed.),Monetary Policy under Inflation Targeting, edition 1, volume 11, chapter 14, pages 547-578, Central Bank of Chile.
    8. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    9. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    10. Robert W. Rich & Charles Steindel, 2007. "A comparison of measures of core inflation," Economic Policy Review, Federal Reserve Bank of New York, vol. 13(Dec), pages 19-38.
    11. Grunspan, T., 2005. "The Fed and the Question of Financial Stability: An Empirical Investigation," Working papers 134, Banque de France.
    12. Juncal Cunado & Javier Gómez Biscarri & Fernando Pérez de Gracia, 2003. "Structural Changes in Volatility and Stock Market Development: Evidence for Spain," Faculty Working Papers 06/03, School of Economics and Business Administration, University of Navarra.
    13. Arturo Estrella & Anthony P. Rodrigues, 2005. "One-sided test for an unknown breakpoint: theory, computation, and application to monetary theory," Staff Reports 232, Federal Reserve Bank of New York.
    14. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Garcia, Rene & Ghysels, Eric, 1998. "Structural change and asset pricing in emerging markets," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 455-473, June.
    16. F. Pérez de Gracia & J. Cuñado; J. Gómez, 2004. "Financial Liberalization and Emerging Stock Market Volatility," Computing in Economics and Finance 2004 124, Society for Computational Economics.
    17. Eric Ghysels & Alain Guay, 1998. "Structural Change Tests for Simulated Method of Moments," CIRANO Working Papers 98s-19, CIRANO.
    18. Pieter J. van der Sluis, 1998. "Structural Stability Tests with Unknown Breakpoint for the Efficient Method of Moments with Application to Stochastic Volatility Models," Tinbergen Institute Discussion Papers 98-055/4, Tinbergen Institute.
    19. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    20. Luis F. Céspedes C. & Claudio Soto G., 2006. "Inflation Targeting And Monetary Policy Credibility In Chile," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 9(3), pages 53-70, December.
    21. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    22. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    23. Joseph G. Haubrich, 2020. "Does the Yield Curve Predict Output?," Working Papers 20-34, Federal Reserve Bank of Cleveland.
    24. Delgado, Miguel A. & Fiteni, Inmaculada, 2002. "External bootstrap tests for parameter stability," Journal of Econometrics, Elsevier, vol. 109(2), pages 275-303, August.
    25. Sen, Amit & Hall, Alastair, 1999. "Two further aspects of some new tests for structural stability," Structural Change and Economic Dynamics, Elsevier, vol. 10(3-4), pages 431-443, December.
    26. Arturo Estrella & Jeffrey C. Fuhrer, 1999. "Are \"deep\" parameters stable? the Lucas critique as an empirical hypothesis," Working Papers 99-4, Federal Reserve Bank of Boston.
    27. Masafumi Kozuka, 2014. "Policy Duration Effects, Quantitative Monetary Easing Policy and Economic Growth: Evidence from Japanese Time Series Data," Discussion Papers 1410, Graduate School of Economics, Kobe University.
    28. Cunado, Juncal & Gomez Biscarri, Javier & Perez de Gracia, Fernando, 2006. "Changes in the dynamic behavior of emerging market volatility: Revisiting the effects of financial liberalization," Emerging Markets Review, Elsevier, vol. 7(3), pages 261-278, September.
    29. Anthony W. Lynch & Jessica A. Wachter, 2008. "Using Samples of Unequal Length in Generalized Method of Moments Estimation," NBER Working Papers 14411, National Bureau of Economic Research, Inc.
    30. Ghysels, Eric & Guay, Alain, 2004. "Testing For Structural Change In The Presence Of Auxiliary Models," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1168-1202, December.
    31. Ghysels, Eric & Cherkaoui, Mouna, 2003. "Emerging markets and trading costs: lessons from Casablanca," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 169-198, February.
    32. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    33. Alain Guay & Olivier Scaillet, 1999. "Indirect Inference, Nuisance Parameter and Threshold Moving Average," Cahiers de recherche CREFE / CREFE Working Papers 95, CREFE, Université du Québec à Montréal.
    34. Stanislav Anatolyev & Grigory Kosenok, 2011. "Sequential Testing with Uniformly Distributed Size," Working Papers w0123, New Economic School (NES).
    35. Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009. "The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
    36. Albert N. Link & David Paton & Donald S. Siegel, 2005. "An econometric analysis of trends in research joint venture activity," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 149-158.
    37. Sen, Amit, 1999. "Approximate p-values of predictive tests for structural stability," Economics Letters, Elsevier, vol. 63(3), pages 245-253, June.
    38. Steland, Ansgar, 2004. "Random walks with drift : a sequential approach," Technical Reports 2004,50, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    39. Juncal Cuñado & Javier Gómez Biscarri & Fernando Perez de Gracia, 2006. "Changes in the Dynamic Behavior of Emerging Market Volatility: Revisiting the Effects of Financial L," Faculty Working Papers 01/06, School of Economics and Business Administration, University of Navarra.
    40. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    41. Mouna Cherkaoui & Eric Ghysels, 1999. "Emerging Markets and Trading Costs," CIRANO Working Papers 99s-04, CIRANO.
    42. Robert W. Rich & Charles Steindel, 2005. "A review of core inflation and an evaluation of its measures," Staff Reports 236, Federal Reserve Bank of New York.
    43. Heinen, Florian & Willert, Juliane, 2011. "Monitoring a change in persistence of a long range dependent time series," Hannover Economic Papers (HEP) dp-479, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

  45. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Market Time and Asset Price Movements Theory and Estimation," CIRANO Working Papers 95s-32, CIRANO.

    Cited by:

    1. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    2. Cayetano, Gea, 2007. "Studying the Properties of the Correlation Trades," MPRA Paper 22318, University Library of Munich, Germany.
    3. de Jong, F.C.J.M. & Nijman, T.E., 1995. "High frequency analysis of lead-lag relationships between financial markets," Discussion Paper 1995-34, Tilburg University, Center for Economic Research.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    5. Michel Baroni & Fabrice Barthélémy & Mahdi Mokrane, 2007. "Is it possible to construct derivatives for the Paris residential market?," THEMA Working Papers 2007-24, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    6. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.
    7. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Helmut Herwartz, 2006. "Econometric analysis of high frequency data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 89-104, March.
    9. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
    10. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    11. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    13. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    14. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    15. Christian Gourieroux & Gaëlle Le Fol, 1997. "Volatilités et mesures de risque," Post-Print halshs-00877048, HAL.
    16. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    17. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    18. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    19. Mouna Cherkaoui & Eric Ghysels, 1999. "Emerging Markets and Trading Costs," CIRANO Working Papers 99s-04, CIRANO.
    20. A. Saichev & D. Sornette, 2014. "A simple microstructure return model explaining microstructure noise and Epps effects," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-36.
    21. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.

  46. René Garcia & Eric Ghysels & Maral Kichian, 1995. "On the Dynamic Specification of International Asset Pricing Models," CIRANO Working Papers 95s-39, CIRANO.

    Cited by:

    1. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

  47. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1995. "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process?," CIRANO Working Papers 95s-19, CIRANO.

    Cited by:

    1. Cubadda, Gianluca & Omtzigt, Pieter, 2003. "Small Sample Improvements in the Statistical Analysis of Seasonally Cointegrated Systems," Economics & Statistics Discussion Papers esdp03012, University of Molise, Department of Economics.
    2. Ching-Chih Chang & Chin-Yuan Hsieh & Yung-Chih Lin, 2012. "A predictive model of the freight rate of the international market in Capesize dry bulk carriers," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 313-317, March.
    3. Perron, P. & Ghysels, E., 1994. "The Effect of Linear Filters on Dynamic Time series with Structural Change," Cahiers de recherche 9425, Universite de Montreal, Departement de sciences economiques.
    4. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    5. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    6. Philip Kostov & John Lingard, 2005. "Seasonally specific model analysis of UK cereals prices," Econometrics 0507014, University Library of Munich, Germany.
    7. Budina, Nina & Maliszewski, Wojciech & de Menil, Georges & Turlea, Geomina, 2006. "Money, inflation and output in Romania, 1992-2000," Journal of International Money and Finance, Elsevier, vol. 25(2), pages 330-347, March.
    8. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    9. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    10. Supachoke Thawornkaiwong, 2016. "Simplified Spectral Analysis and Linear Filters for Analysis of Economic Time Series," PIER Discussion Papers 25, Puey Ungphakorn Institute for Economic Research.
    11. Lacroix, R., 2008. "Analyse conjoncturelle de données brutes et estimation de cycles Partie 1 : estimation et tests," Working papers 209, Banque de France.
    12. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    13. Rossen, Anja, 2014. "On the predictive content of nonlinear transformations of lagged autoregression residuals and time series observations," HWWI Research Papers 157, Hamburg Institute of International Economics (HWWI).
    14. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1997. "Seasonal Adjustment and Volatility Dynamics," CIRANO Working Papers 97s-39, CIRANO.
    15. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    16. Rabindra Nepal and John Foster, 2016. "Testing for Market Integration in the Australian National Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    18. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    19. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    20. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    21. Franses, Philip Hans & de Bruin, Paul, 2002. "On data transformations and evidence of nonlinearity," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 621-632, September.
    22. Matas Mir, Antonio & Osborn, Denise R, 2004. "Seasonal adjustment and the detection of business cycle phases," Working Paper Series 357, European Central Bank.
    23. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    24. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    25. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    26. Ching-Chih Chang & Tin-Chia Lai, 2011. "The nonlinear dynamic process of macroeconomic development by modelling dry bulk shipping market," Applied Economics Letters, Taylor & Francis Journals, vol. 18(17), pages 1655-1663.
    27. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    28. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    29. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    30. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
    31. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    32. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    33. Tarlok Singh, 2012. "Testing nonlinearities in economic growth in the OECD countries: an evidence from SETAR and STAR models," Applied Economics, Taylor & Francis Journals, vol. 44(30), pages 3887-3908, October.
    34. Gianluca Cubadda, 1999. "Common cycles in seasonal non‐stationary time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May.
    35. Gianluca Cubadda, 2001. "Common Features In Time Series With Both Deterministic And Stochastic Seasonality," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 201-216.
    36. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.
    37. Lacroix, R., 2008. "Analyse conjoncturelle de données brutes et estimation de cycles Partie 2 : mise en oeuvre empirique," Working papers 210, Banque de France.
    38. Zacharias Psaradakis & Martin Sola, 2003. "On detrending and cyclical asymmetry," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 271-289.
    39. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    40. Emanuela Marrocu, 2006. "An Investigation of the Effects of Data Transformation on Nonlinearity," Empirical Economics, Springer, vol. 31(4), pages 801-820, November.
    41. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    42. Lenz, Carlos, 2003. "A different look at the Census X-11 filter," Economics Letters, Elsevier, vol. 79(1), pages 1-6, April.

  48. Eric Ghysels, 1995. "On Stable Factor Structures in the Pricing of Risk," CIRANO Working Papers 95s-16, CIRANO.

    Cited by:

    1. Martin Scheicher, 2000. "Time-varying risk in the German stock market," The European Journal of Finance, Taylor & Francis Journals, vol. 6(1), pages 70-91.
    2. BONOMO, Marco & GARCIA, René, 1997. "Tests of Conditional Asset Pricing Models in the Brazilian Stock Market," Cahiers de recherche 9715, Universite de Montreal, Departement de sciences economiques.
    3. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross-Section of Stock Returns," NBER Working Papers 7009, National Bureau of Economic Research, Inc.
    4. Michael W Brandt & David A Chapman, 2018. "Linear Approximations and Tests of Conditional Pricing Models [A new approach to international arbitrage pricing]," Review of Finance, European Finance Association, vol. 22(2), pages 455-489.
    5. Wayne E. Ferson & Andrew F. Siegel, 2006. "Testing Portfolio Efficiency with Conditioning Information," NBER Working Papers 12098, National Bureau of Economic Research, Inc.
    6. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    7. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    8. Mattia Ciprian & Stefano d'Addona, 2005. "Time Varying Sensitivities on a GRID architecture," Finance 0511007, University Library of Munich, Germany.
    9. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    10. Schrimpf, Andreas & Schröder, Michael & Stehle, Richard, 2006. "Evaluating conditional asset pricing models for the German stock market," ZEW Discussion Papers 06-043, ZEW - Leibniz Centre for European Economic Research.
    11. Ho-Chuan Huang & Wan-hsiu Cheng, 2005. "Tests of the CAPM under structural changes," International Economic Journal, Taylor & Francis Journals, vol. 19(4), pages 523-541.

  49. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.

    Cited by:

    1. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    2. Takaishi, Tetsuya, 2018. "Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 139-154.
    3. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    4. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    5. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," Center for Financial Institutions Working Papers 99-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
    7. Peter Bossaert & Eric Ghysels & Christian Gouriéroux, 1996. "Arbitrage Based Pricing When Volatility Is Stochastic," CIRANO Working Papers 96s-20, CIRANO.
    8. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
    9. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2011. "Modelling and Forecasting Noisy Realized Volatility," KIER Working Papers 758, Kyoto University, Institute of Economic Research.
    10. Bottazzi, Giulio & Devetag, Giovanna & Pancotto, Francesca, 2011. "Does volatility matter? Expectations of price return and variability in an asset pricing experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 77(2), pages 124-146, February.
    11. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    12. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics," Economics Papers 2002-W13, Economics Group, Nuffield College, University of Oxford, revised 18 Mar 2002.
    13. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
    14. Ekaterini Panopoulou & B. Groom & P. Koundouri & Theologos Pantelidis, 2005. "Discounting the distant future: How much does model selection affect the certainty equivalent rate?," Economics Department Working Paper Series n1480105, Department of Economics, National University of Ireland - Maynooth.
    15. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
    16. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    17. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
    19. René Garcia & Richard Luger & Eric Renault, 2001. "Asymmetric Smiles, Leverage Effects and Structural Parameters," CIRANO Working Papers 2001s-01, CIRANO.
    20. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    21. Alessandro Rossi & Giampiero M. Gallo, 2002. "Volatility Estimation via Hidden Markov Models," Econometrics Working Papers Archive wp2002_14, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    22. Nigel Wilkins, 2004. "Indirect Estimation of Long Memory Volatility Models," Econometric Society 2004 Far Eastern Meetings 459, Econometric Society.
    23. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    24. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    25. Pesaran, M. Hashem & Zaffaroni, Paolo, 2005. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi-Asset Volatility Models for Risk Management," CEPR Discussion Papers 5279, C.E.P.R. Discussion Papers.
    26. Andrea Beltratti & Claudio Morana, 2005. "Structural Breaks and Common Factors in the Volatility of the Fama-French Factor Portfolios," ICER Working Papers 23-2005, ICER - International Centre for Economic Research.
    27. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    28. Mark Broadie & Jérôme Detemple & Eric Ghysels & Olivier Torrès, 1996. "Nonparametric Estimation of American Options Exercise Boundaries and Call Prices," CIRANO Working Papers 96s-24, CIRANO.
    29. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    30. Oleg Korenok & Stanislav Radchenko, 2005. "The smooth transition autoregressive target zone model with the Gaussian stochastic volatility and TGARCH error terms with applications," Working Papers 0505, VCU School of Business, Department of Economics.
    31. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    32. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    33. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, New Economic School (NES).
    34. John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
    35. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
    36. Mustafa Hakan Eratalay & Ariana Paola Cortés à ngel, 2022. "The Impact Of Esg Ratings On The Systemic Risk Of European Blue-Chip Firms," University of Tartu - Faculty of Economics and Business Administration Working Paper Series 139, Faculty of Economics and Business Administration, University of Tartu (Estonia).
    37. Lüders, Erik & Schröder, Michael, 2004. "Modeling Asset Returns: A Comparison of Theoretical and Empirical Models," ZEW Discussion Papers 04-19, ZEW - Leibniz Centre for European Economic Research.
    38. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    39. Carnero, María Ángeles, 2003. "Detecting level shifts in the presence of conditional heteroscedasticity," DES - Working Papers. Statistics and Econometrics. WS ws036313, Universidad Carlos III de Madrid. Departamento de Estadística.
    40. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    41. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004-12, Christian-Albrechts-University of Kiel, Department of Economics.
    42. Mendes, Rui Vilela & Oliveira, Maria J., 2008. "A Data-Reconstructed Fractional Volatility Model," Economics Discussion Papers 2008-22, Kiel Institute for the World Economy (IfW Kiel).
    43. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-079, New York University, Leonard N. Stern School of Business-.
    44. S. Bordignon & D. Raggi, 2008. "Volatility, Jumps and Predictability of Returns: a Sequential Analysis," Working Papers 636, Dipartimento Scienze Economiche, Universita' di Bologna.
    45. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    46. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    47. Javier De Peña & Luis A. Gil-Alana, 2002. "Do Spanish Stock Market Prices Follow a Random Walk?," Faculty Working Papers 01/02, School of Economics and Business Administration, University of Navarra.
    48. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    49. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
    50. Kim, Jeong-Hoon & Yoon, Ji-Hun & Lee, Jungwoo & Choi, Sun-Yong, 2015. "On the stochastic elasticity of variance diffusions," Economic Modelling, Elsevier, vol. 51(C), pages 263-268.
    51. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    52. Nuno Cassola & Claudio Morana, 2006. "Volatility of interest rates in the euro area: Evidence from high frequency data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 513-528.
    53. Hidalgo, Javier & Zaffaroni, Paolo, 2007. "A goodness-of-fit test for ARCH([infinity]) models," Journal of Econometrics, Elsevier, vol. 141(2), pages 835-875, December.
    54. Hafner, C. & Preminger, A., 2010. "Deciding between GARCH and Stochastic Volatility via Strong Decision Rules," LIDAM Reprints ISBA 2010032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    55. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.
    56. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
    57. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    58. Kanatani, Taro, 2004. "Iterative method for exponentially weighted rolling regression," Finance Research Letters, Elsevier, vol. 1(3), pages 196-201, September.
    59. Chow, Ying-Foon & Lam, James T.K. & Yeung, Hinson S., 2009. "Realized volatility of index constituent stocks in Hong Kong," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2809-2818.
    60. Gropp, Reint E. & Kadareja, Arjan, 2007. "Stale information, shocks and volatility," ZEW Discussion Papers 07-012, ZEW - Leibniz Centre for European Economic Research.
    61. Shinichi Aihara, 2000. "Estimation of stochastic volatility in the Hull-White model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(3), pages 153-181.
    62. Antonis Demos, 2002. "Moments and dynamic structure of a time-varying parameter stochastic volatility in mean model," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 345-357, June.
    63. Jeremy Large, 2007. "Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment," Economics Series Working Papers 340, University of Oxford, Department of Economics.
    64. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    65. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    66. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, University Library of Munich, Germany.
    67. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    68. Heather M. Anderson & Farshid Vahid, 2013. "Common non-linearities in multiple series of stock market volatility," Monash Econometrics and Business Statistics Working Papers 1/13, Monash University, Department of Econometrics and Business Statistics.
    69. Nour Meddahi & Eric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
    70. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
    71. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2009. "Option Valuation with Conditional Heteroskedasticity and Non-Normality," CIRANO Working Papers 2009s-32, CIRANO.
    72. GHYSELS, Eric & PATILEA, Valentin & RENAULT, Eric & TORRES, Olivier, 1997. "Nonparametric methods and option pricing," LIDAM Discussion Papers CORE 1997075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    73. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    74. Karoll Gómez Portilla & Santiago Gallón Gómez, 2007. "Distribución condicional de los retornos de la tasa de cambio colombiana: un ejercicio empírico a partir de modelos GARCH multivariados," Revista de Economía del Rosario, Universidad del Rosario, December.
    75. Francis X. Diebold, 2004. "The Nobel Memorial Prize for Robert F. Engle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(2), pages 165-185, June.
    76. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
    77. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
    78. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    79. Marcelo Fernandes & Joachim Grammig, 2000. "Non-Parametric Specification Tests For Conditional Duration Models," Computing in Economics and Finance 2000 40, Society for Computational Economics.
    80. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    81. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    82. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    83. Mr. Gene L. Leon & Mr. Rupert D Worrell, 2001. "Price Volatility and Financial Instability," IMF Working Papers 2001/060, International Monetary Fund.
    84. Philip Arestis, 2004. "Is there a trade-off between inflation variability and output-gap variability in the EMU countries?," National Institute of Economic and Social Research (NIESR) Discussion Papers 238, National Institute of Economic and Social Research.
    85. Catherine Doz & Eric Renault, 2004. "Conditionaly Heteroskedastic Factor Models : Identificationand Instrumental variables Estmation," THEMA Working Papers 2004-13, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    86. Pérez, Ana, 2001. "Modelos de memoria larga para series económicas y financieras," DES - Documentos de Trabajo. Estadística y Econometría. DS ds010101, Universidad Carlos III de Madrid. Departamento de Estadística.
    87. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    88. German Rodikov & Nino Antulov-Fantulin, 2022. "Can LSTM outperform volatility-econometric models?," Papers 2202.11581, arXiv.org.
    89. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
    90. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    91. Pérez, Ana, 1999. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," DES - Working Papers. Statistics and Econometrics. WS 6360, Universidad Carlos III de Madrid. Departamento de Estadística.
    92. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    93. Hurvich, Clifford & Wang, Yi, 2009. "A Pure-Jump Transaction-Level Price Model Yielding Cointegration, Leverage, and Nonsynchronous Trading Effects," MPRA Paper 12575, University Library of Munich, Germany.
    94. Ming Liu & Harold H. Zhang, "undated". "Specification Tests in the Efficient Method of Moments Framework with Application to the Stochastic Volatility Models," Computing in Economics and Finance 1997 93, Society for Computational Economics.
    95. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    96. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    97. Claudio Morana, 2004. "Frequency domain principal components estimation of fractionally cointegrated processes," Applied Economics Letters, Taylor & Francis Journals, vol. 11(13), pages 837-842.
    98. Michael W. Brandt & Qiang Kang, 2002. "On the Relationship Between the Conditional Mean and Volatility of Stock Returns: A Latent VAR Approach," NBER Working Papers 9056, National Bureau of Economic Research, Inc.
    99. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    100. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    101. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    102. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    103. Harvey, A. & Chakravarty, T., 2008. "Beta-t-(E)GARCH," Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge.
    104. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    105. Dominguez, Kathryn M. E., 2003. "The market microstructure of central bank intervention," Journal of International Economics, Elsevier, vol. 59(1), pages 25-45, January.
    106. Eric Ghysels & Alain Guay, 1998. "Structural Change Tests for Simulated Method of Moments," CIRANO Working Papers 98s-19, CIRANO.
    107. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    108. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    109. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    110. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    111. Berument, Hakan & Yalcin, Yeliz & Yildirim, Julide, 2009. "The effect of inflation uncertainty on inflation: Stochastic volatility in mean model within a dynamic framework," Economic Modelling, Elsevier, vol. 26(6), pages 1201-1207, November.
    112. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    113. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2012. "News Impact Curve for Stochastic Volatility Models," Global COE Hi-Stat Discussion Paper Series gd12-242, Institute of Economic Research, Hitotsubashi University.
    114. Dias, Fabio S. & Peters, Gareth W., 2021. "Option pricing with polynomial chaos expansion stochastic bridge interpolators and signed path dependence," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    115. Elena Andreou & Eric Ghysels, 2003. "Test for Breaks in the Conditional Co-Movements of Asset Returns," University of Cyprus Working Papers in Economics 3-2003, University of Cyprus Department of Economics.
    116. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    117. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    118. Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
    119. John M. Maheu & Tom McCurdy, 2000. "Volatility Dynamics Under Duration-Dependent Mixing," Econometric Society World Congress 2000 Contributed Papers 1427, Econometric Society.
    120. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    121. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    122. Renner, Ch. & Peinke, J. & Friedrich, R., 2001. "Evidence of Markov properties of high frequency exchange rate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 499-520.
    123. Chang, Kook-Hyun & Kim, Myung-Jig, 2001. "Jumps and time-varying correlations in daily foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 611-637, October.
    124. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    125. Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
    126. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    127. Bengt Holmstrom & Jean Tirole, 1998. "LAPM: A Liquidity Based Asset Pricing Model," Working papers 98-8, Massachusetts Institute of Technology (MIT), Department of Economics.
    128. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.
    129. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185, arXiv.org, revised Jun 2018.
    130. Fernandes, Marcelo & Grammig, Joachim, 2002. "A family of autoregressive conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 440, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    131. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    132. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    133. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    134. Jeong‐Hoon Kim & Jungwoo Lee & Song‐Ping Zhu & Seok‐Hyon Yu, 2014. "A multiscale correction to the Black–Scholes formula," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(6), pages 753-765, November.
    135. Nyo Nyo A. Kyaw & Cornelis A. Los & Sijing Zong, 2004. "Persistence Characteristics of Latin American Financial Markets," Finance 0409048, University Library of Munich, Germany.
    136. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    137. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    138. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
    139. A. Mele, 2000. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," THEMA Working Papers 2000-39, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    140. Geweke, John & Tanizaki, Hisashi, 2001. "Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 151-170, August.
    141. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    142. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    143. Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
    144. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    145. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    146. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    147. Fornari, F. & Mele, A., 1998. "ARCH Models and Option Pricing: The Continuous Time Connection," Papers 9830, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
    148. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    149. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
    150. Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.
    151. Lüders, Erik & Peisl, Bernhard, 2001. "How do investors' expectations drive asset prices?," ZEW Discussion Papers 01-15, ZEW - Leibniz Centre for European Economic Research.
    152. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    153. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    154. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
    155. Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
    156. Solomon Abayomi Olakojo, 2020. "A Markov‐switching analysis of Nigeria's business cycles: Are election cycles important?," African Development Review, African Development Bank, vol. 32(1), pages 67-79, March.
    157. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    158. Thomas Mikosch, 2004. "Is it really long memory we see in financial returns?," Econometrics 0412002, University Library of Munich, Germany.
    159. Elena Andreou & Eric Ghysels, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," CIRANO Working Papers 2004s-25, CIRANO.
    160. Jeremy Large, 2005. "Estimating quadratic variation when quoted prices jump by a constant increment," Economics Papers 2005-W05, Economics Group, Nuffield College, University of Oxford.
    161. Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
    162. Jorge Alberto Achcar & Edilberto Cepeda-Cuervo & Milton Barossi-Filho, 2012. "Multivariate volatility models: an application to IBOVESPA and Dow Jones Industrial," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, June.
    163. Fulvia Focker & Umberto Triacca, 2006. "A new proxy of the average volatility of a basket of returns: A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-14.
    164. Reno, Roberto, 2006. "Nonparametric estimation of stochastic volatility models," Economics Letters, Elsevier, vol. 90(3), pages 390-395, March.
    165. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
    166. Jun Yu, 2004. "On leverage in a stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 497, Econometric Society.
    167. Ozturk, Serda Selin & Richard, Jean-Francois, 2015. "Stochastic volatility and leverage: Application to a panel of S&P500 stocks," Finance Research Letters, Elsevier, vol. 12(C), pages 67-76.
    168. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    169. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    170. Imma Valentina Curato, 2013. "Fourier estimation of stochastic leverage using high frequency data," Working Papers - Mathematical Economics 2013-04, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    171. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.
    172. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
    173. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    174. Ghysels, E. & Gourieroux, C. & Jasiak, J., 1995. "Market Time and Asset Price Movements: Theory and Estimation," Cahiers de recherche 9536, Universite de Montreal, Departement de sciences economiques.
    175. Hisashi Tanizaki, 2001. "Nonlinear and Non-Gaussian State Space Modeling Using Sampling Techniques," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 63-81, March.
    176. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
    177. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
    178. Pérez, Ana & Ruiz, Esther & Veiga, Helena, 2009. "A note on the properties of power-transformed returns in long-memory stochastic volatility models with leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3593-3600, August.
    179. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    180. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    181. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    182. Su, Dongwei & Fleisher, Belton M., 1999. "Why does return volatility differ in Chinese stock markets?," Pacific-Basin Finance Journal, Elsevier, vol. 7(5), pages 557-586, December.
    183. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    184. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    185. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    186. Michael Weba, 2024. "Investment strategies based on forecasts are (almost) useless," Papers 2408.01772, arXiv.org.
    187. Isaenko, Sergey, 2023. "Trading strategies and the frequency of time-series," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 267-283.
    188. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
    189. Ester Ruiz & Fernando Lorenzo, 1998. "The relation between the level and uncertainty of inflation," Documentos de Trabajo (working papers) 0698, Department of Economics - dECON.
    190. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    191. Coppejans, Mark & Gallant, A. Ronald, 2000. "Cross Validated SNP Density Estimates," Working Papers 00-10, Duke University, Department of Economics.
    192. Benjamin Poignard & Manabu Asai, 2022. "High-Dimensional Sparse Multivariate Stochastic Volatility Models," Papers 2201.08584, arXiv.org, revised May 2022.
    193. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    194. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "A Feasible Central Limit Theory for Realised Volatility Under Leverage," Economics Papers 2004-W03, Economics Group, Nuffield College, University of Oxford.
    195. Thomakos, Dimitrios D. & Wang, Tao & Wille, Luc T., 2002. "Modeling daily realized futures volatility with singular spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 505-519.
    196. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    197. Juan Pablo Domínguez H., 2007. "Cost of Equity Capital and Country Risk: An econometric analysis of the expected rate of return for four Latin American countries," Economía, Instituto de Investigaciones Económicas y Sociales (IIES). Facultad de Ciencias Económicas y Sociales. Universidad de Los Andes. Mérida, Venezuela, vol. 32(23), pages 63-90, january-j.
    198. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    199. Tobias Adrian & Joshua V. Rosenberg, 2006. "Stock returns and volatility: pricing the short-run and long-run components of market risk," Staff Reports 254, Federal Reserve Bank of New York.
    200. Pedro J. F. de Lima & Michelle L. Barnes, 2000. "Modeling Financial Volatility: Extreme Observations, Nonlinearities and Nonstationarities," School of Economics and Public Policy Working Papers 2000-05, University of Adelaide, School of Economics and Public Policy.
    201. Joshua Rosenberg & Robert F. Engle, 2000. "Empirical Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-014, New York University, Leonard N. Stern School of Business-.
    202. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    203. Aliou Diop & Dominique Guegan, 2003. "Extreme Distribution of a Generalized Stochastic Volatility Model," Post-Print halshs-00188535, HAL.
    204. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    205. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    206. Selçuk, Faruk, 2004. "Free float and stochastic volatility: the experience of a small open economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 693-700.
    207. Pierre Chausse & Dinghai Xu, 2012. "GMM Estimation of a Stochastic Volatility Model with Realized Volatility: A Monte Carlo Study," Working Papers 1203, University of Waterloo, Department of Economics, revised May 2012.
    208. Granger, Clive W.J. & Machina, Mark J., 2006. "Structural attribution of observed volatility clustering," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 15-29.
    209. Christian Dunis & Jason Laws & Stephane Chauvin, 2003. "FX volatility forecasts and the informational content of market data for volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 9(3), pages 242-272.
    210. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    211. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    212. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
    213. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
    214. Veiga, Helena, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de Estadística.
    215. John M Maheu & Thomas H McCurdy, 2007. "Modeling foreign exchange rates with jumps," Working Papers tecipa-279, University of Toronto, Department of Economics.
    216. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    217. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    218. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
    219. Daly, Kevin & Vo, Vinh, 2008. "Idiosyncratic risk in the Dow Jones Eurostoxx50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4261-4271.
    220. Fung, Ka Wai Terence & Lau, Chi Keung Marco & Chan, Kwok Ho, 2014. "The conditional equity premium, cross-sectional returns and stochastic volatility," Economic Modelling, Elsevier, vol. 38(C), pages 316-327.
    221. Mr. Noureddine Krichene, 2003. "Modeling Stochastic Volatility with Application to Stock Returns," IMF Working Papers 2003/125, International Monetary Fund.
    222. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Teng, Huei-wen, 2013. "State Price Densities implied from weather derivatives," SFB 649 Discussion Papers 2013-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    223. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    224. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    225. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    226. Jean-Francois Richard & Roman Liesenfeld, 2007. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Working Paper 322, Department of Economics, University of Pittsburgh, revised Jan 2004.
    227. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    228. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.
    229. Daniel B. Nelson, 1994. "Asymptotically Optimal Smoothing with ARCH Models," NBER Technical Working Papers 0161, National Bureau of Economic Research, Inc.
    230. C. Renner & J. Peinke & R. Friedrich, 2001. "Markov properties of high frequency exchange rate data," Papers cond-mat/0102494, arXiv.org, revised Apr 2001.
    231. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    232. Aycan HEPSAG, 2016. "Asymmetric stochastic volatility in central and eastern European stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(607), S), pages 135-144, Summer.
    233. Rodríguez, Julio, 2003. "A powerful test for conditional heteroscedasticity for financial time series with highly persistent volatilities," DES - Working Papers. Statistics and Econometrics. WS ws036716, Universidad Carlos III de Madrid. Departamento de Estadística.
    234. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Realised power variation and stochastic volatility models," Economics Papers 2001-W18, Economics Group, Nuffield College, University of Oxford.
    235. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    236. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    237. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    238. Christian Gollier, 2005. "Optimal Portfolio Management for Individual Pension Plans," CESifo Working Paper Series 1394, CESifo.
    239. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Sivaprasad, Sheeja, 2021. "The impact of Covid-19 on G7 stock markets volatility: Evidence from a ST-HAR model," International Review of Financial Analysis, Elsevier, vol. 74(C).
    240. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.
    241. Ronald Gallant, A. & Tauchen, George, 1999. "The relative efficiency of method of moments estimators1," Journal of Econometrics, Elsevier, vol. 92(1), pages 149-172, September.
    242. Jian Zhou & Zhixin Kang, 2011. "A Comparison of Alternative Forecast Models of REIT Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 275-294, April.
    243. Uppal, Raman & Das, Sanjiv Ranjan, 2002. "Systemic Risk and International Portfolio Choice," CEPR Discussion Papers 3305, C.E.P.R. Discussion Papers.
    244. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Likelihood-Related Estimation Methods and Non-Gaussian GARCH Processes," Post-Print halshs-00523371, HAL.
    245. Solibakke, Per Bjarte, 2001. "A stochastic volatility model specification with diagnostics for thinly traded equity markets," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 385-406, December.
    246. Arenas, Zochil González & Jimenez, Juan Carlos & Lozada-Chang, Li-Vang & Santana, Roberto, 2021. "Estimation of distribution algorithms for the computation of innovation estimators of diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 449-467.
    247. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Higher order variation and stochastic volatility models," Economics Papers 2001-W8, Economics Group, Nuffield College, University of Oxford.
    248. Robert F. Engle & Jeffrey R. Russell, 1994. "Forecasting Transaction Rates: The Autoregressive Conditional Duration Model," NBER Working Papers 4966, National Bureau of Economic Research, Inc.
    249. Jean-Pierre Fouque & George Papanicolaou & K. Sircar, 1999. "Financial Modeling in a Fast Mean-Reverting Stochastic Volatility Environment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 37-48, January.
    250. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    251. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    252. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Normal modified stable processes," Economics Papers 2001-W6, Economics Group, Nuffield College, University of Oxford.
    253. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    254. Genon-Catalot, Valentine & Laredo, Catherine, 2006. "Leroux's method for general hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 116(2), pages 222-243, February.
    255. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," Economics Papers 2004-W20, Economics Group, Nuffield College, University of Oxford.
    256. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," CAEPR Working Papers 2007-019, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    257. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    258. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    259. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    260. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    261. Dao, Chi-Mai & Wolters, Jürgen, 2008. "Common stochastic volatility trends in international stock returns," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 431-445, June.
    262. Soosung Hwang & Steve E. Satchell & Pedro L. Valls Pereira, 2004. "How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations," Econometric Society 2004 Latin American Meetings 198, Econometric Society.
    263. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    264. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1996. "Kernel Autocorrelogram for Time Deformed Processes," CIRANO Working Papers 96s-19, CIRANO.
    265. Lucchetti, Riccardo & Palomba, Giulio, 2008. "Nonlinear Adjustment in US Bond Yields: an Empirical Analysis with Conditional Heteroskedasticity," MPRA Paper 11571, University Library of Munich, Germany.
    266. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    267. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    268. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    269. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    270. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    271. Torben G. Andersen & Tim Bollerslev, 1996. "DM-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," NBER Working Papers 5783, National Bureau of Economic Research, Inc.
    272. GARCIA, René & RENAULT, Éric, 2000. "Latent Variable Models for Stochastic Discount Factors," Cahiers de recherche 2000-01, Universite de Montreal, Departement de sciences economiques.
    273. Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
    274. So, Mike K.P. & Kwok, Susanna W.Y., 2006. "A multivariate long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 450-464.
    275. Kevin Kotze & Stan Du Plessis, 2012. "Trends and Structural Changes in South African Macroeconomic Volatility," Working Papers 297, Economic Research Southern Africa.
    276. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    277. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    278. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    279. Tu, Anthony H. & Wang, Ming-Chun, 2007. "The innovations of e-mini contracts and futures price volatility components: The empirical investigation of S&P 500 stock index futures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 198-211, April.
    280. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    281. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1998. "Pricing and Hedging Long-Term Options," Yale School of Management Working Papers ysm90, Yale School of Management.
    282. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    283. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.
    284. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
    285. Mora Galán, Alberto & Pérez, Ana, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
    286. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
    287. Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, University Library of Munich, Germany.
    288. Bent Jesper Christensen & Morten Ø. Nielsen, 2005. "The Implied-realized Volatility Relation With Jumps In Underlying Asset Prices," Working Paper 1186, Economics Department, Queen's University.
    289. Michael Levine & Soledad Torres & Frederi Viens, 2009. "Estimators for the long-memory parameter in LARCH models, and fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 12(3), pages 221-250, October.
    290. Yacine Ait-Sahalia & Robert Kimmel, 2004. "Maximum Likelihood Estimation of Stochastic Volatility Models," NBER Working Papers 10579, National Bureau of Economic Research, Inc.
    291. Han, Yufeng, 2012. "State uncertainty in stock markets: How big is the impact on the cost of equity?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2575-2592.
    292. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    293. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    294. María García Centeno & Román Mínguez Salido, 2009. "Estimation of Asymmetric Stochastic Volatility Models for Stock-Exchange Index Returns," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(1), pages 71-87, February.
    295. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    296. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "How accurate is the asymptotic approximation to the distribution of realised volatility?," Economics Papers 2001-W16, Economics Group, Nuffield College, University of Oxford.
    297. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.

  50. Bryan Campbell & Eric Ghysels, 1995. "An Empirical Analysis of the Canadian Budget Process," CIRANO Working Papers 95s-08, CIRANO.

    Cited by:

    1. Florian Chatagny, 2015. "Incentive Effects of Fiscal Rules on the Finance Minister's Behaviour: Evidence from Revenue Projections in Swiss Cantons," CESifo Working Paper Series 5223, CESifo.
    2. Friedrich Heinemann, 2006. "Planning or Propaganda? An Evaluation of Germany's Medium-term Budgetary Planning," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 62(4), pages 551-578, December.
    3. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    4. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    5. Artur Tarassow & Sven Schreiber, 2018. "FEP - the forecast evaluation package for gretl," IMK Working Paper 190-2018, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    6. Chatagny, Florian & Siliverstovs, Boriss, 2015. "Evaluating rationality of level and growth rate forecasts of direct tax revenues under flexible loss function: Evidence from Swiss cantons," Economics Letters, Elsevier, vol. 134(C), pages 65-68.
    7. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    9. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    10. Mr. Mikhail Golosov & Mr. John R King, 2002. "Tax Revenue Forecasts in IMF-Supported Programs," IMF Working Papers 2002/236, International Monetary Fund.
    11. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.

  51. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.

    Cited by:

    1. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    2. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    3. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    4. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    6. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    7. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    8. Weihua Shi & Cheng-Few Lee, 2008. "Volatility Persistence of High-Frequency Returns in the Japanese Government Bond Futures Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 511-530.
    9. Kunst, Robert M. & Franses, Philip Hans, 2010. "Asymmetric Time Aggregation and its Potential Benefits for Forecasting Annual Data," Economics Series 252, Institute for Advanced Studies.
    10. Ghysels, E. & Gourieroux, C. & Jasiak, J., 1995. "Market Time and Asset Price Movements: Theory and Estimation," Cahiers de recherche 9536, Universite de Montreal, Departement de sciences economiques.
    11. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    12. Jérôme Fillol, 2003. "Multifractality: Theory and Evidence an Application to the French Stock Market," Economics Bulletin, AccessEcon, vol. 3(31), pages 1-12.
    13. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    14. A. Saichev & D. Sornette, 2014. "A simple microstructure return model explaining microstructure noise and Epps effects," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-36.
    15. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.

  52. Eric Ghysels & Joann Jasiak, 1995. "Stochastic Volatility and Time Deformation: An Application to Trading Volume and Leverage Effects," CIRANO Working Papers 95s-31, CIRANO.

    Cited by:

    1. Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
    2. Peter Bossaert & Eric Ghysels & Christian Gouriéroux, 1996. "Arbitrage Based Pricing When Volatility Is Stochastic," CIRANO Working Papers 96s-20, CIRANO.
    3. Juan Carlos Ruilova & Pedro Alberto Morettin, 2020. "Parsimonious Heterogeneous ARCH Models for High Frequency Modeling," JRFM, MDPI, vol. 13(2), pages 1-19, February.
    4. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    5. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    6. Sirimon Treepongkaruna & Robert Brooks & Stephen Gray, 2012. "Do trading hours affect volatility links in the foreign exchange market?," Australian Journal of Management, Australian School of Business, vol. 37(1), pages 7-27, April.
    7. Philippe Jorion, 1996. "Risk and Turnover in the Foreign Exchange Market," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 19-40, National Bureau of Economic Research, Inc.
    8. Sprumont, Y., 1995. "On the Game-Theoretic Structure of Public-Good Economies," Cahiers de recherche 9519, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    10. Eric Ghysels & Jean-Pierre Florens & Mikhail Chernov & Marine Carrasco, 2003. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," CIRANO Working Papers 2003s-02, CIRANO.
    11. Liu, Ming & Zhang, Harold H., 1998. "Overparameterization in the seminonparametric density estimation," Economics Letters, Elsevier, vol. 60(1), pages 11-18, July.
    12. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
    13. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    14. Ming Liu & Harold H. Zhang, "undated". "Specification Tests in the Efficient Method of Moments Framework with Application to the Stochastic Volatility Models," Computing in Economics and Finance 1997 93, Society for Computational Economics.
    15. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    16. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    17. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Economics Papers 2003-W12, Economics Group, Nuffield College, University of Oxford.
    18. Gavin Ooft & Philip Hans Franses & Sailesh Bhaghoe, 2023. "Autoregressive conditional durations: An application to the Surinamese dollar versus the US dollar exchange rate," Review of Development Economics, Wiley Blackwell, vol. 27(4), pages 2618-2637, November.
    19. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    20. Ghysels, E. & Gourieroux, C. & Jasiak, J., 1995. "Market Time and Asset Price Movements: Theory and Estimation," Cahiers de recherche 9536, Universite de Montreal, Departement de sciences economiques.
    21. David N. Margolis, 1995. "Firm Heterogeneity and Worker Self-Selection Bias Estimated Returns to Seniority," CIRANO Working Papers 95s-04, CIRANO.
    22. Tauchen, George E., 1995. "New Minimum Chi-Square Methods in Empirical Finance," Working Papers 95-42, Duke University, Department of Economics.
    23. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
    24. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
    25. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    26. Robert F. Engle & Jeffrey R. Russell, 1994. "Forecasting Transaction Rates: The Autoregressive Conditional Duration Model," NBER Working Papers 4966, National Bureau of Economic Research, Inc.
    27. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1996. "Kernel Autocorrelogram for Time Deformed Processes," CIRANO Working Papers 96s-19, CIRANO.
    28. Patrick Gagliardini & Christian Gourieroux, 2002. "Duration Time Series Models with Proportional Hazard," Working Papers 2002-21, Center for Research in Economics and Statistics.
    29. Zoltan Eisler & Janos Kertesz, 2004. "Multifractal model of asset returns with leverage effect," Papers cond-mat/0403767, arXiv.org, revised May 2004.

  53. Eric Ghysels & Alastair Hall & Hahn Shik Lee, 1995. "On Periodic Structures and Testing for Seasonal Unit Roots," CIRANO Working Papers 95s-21, CIRANO.

    Cited by:

    1. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    3. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    4. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    5. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    6. Kunst, Robert M., 1997. "Decision Bounds for Data-Admissible Seasonal Models," Economics Series 51, Institute for Advanced Studies.
    7. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.

  54. Eric Ghysels & Lynda Khalaf & Cosme Vodounou, 1994. "Simulation Based Inference in Moving Average Models," CIRANO Working Papers 94s-11, CIRANO.

    Cited by:

    1. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
    2. Peter Fuleky & Eric Zivot, 2010. "Indirect Inference Based on the Score," Working Papers UWEC-2010-08, University of Washington, Department of Economics.
    3. Simone Cerreia-Vioglio & Fulvio Ortu & Federico Severino & Claudio Tebaldi, 2023. "Multivariate Wold decompositions: a Hilbert A-module approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 45-96, June.
    4. Sprumont, Y., 1995. "On the Game-Theoretic Structure of Public-Good Economies," Cahiers de recherche 9519, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Eduardo Rossi & Paolo Santucci de Magistris, 2018. "Indirect inference with time series observed with error," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 874-897, September.
    6. Amigues, J-P & Favard, P. & Gaudet, G. & Moreaux, M, 1996. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute is Limited," Cahiers de recherche 9628, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    8. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    9. Touhami, A. & Martens, A., 1996. "Macroemesures in Computable General Equilibrium Models: a Probabilistic Treatment with an Application to Morocco," Cahiers de recherche 9621, Universite de Montreal, Departement de sciences economiques.
    10. Nikolay Gospodinov & Serena Ng, 2013. "Minimum distance estimation of possibly non-invertible moving average models," FRB Atlanta Working Paper 2013-11, Federal Reserve Bank of Atlanta.
    11. Russell Davidson & Victoria Zinde-Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1595-1631, December.
    12. Stelios Arvanitis, 2013. "On the Existence of Strongly Consistent Indirect Estimators When the Binding Function Is Compact Valued," Journal of Mathematics, Hindawi, vol. 2013, pages 1-14, November.
    13. Pesaran, H.M. & Ruge-Murcia, F.J., 1995. "A Discrete-Time Version of Target Zone Models with Jumps," Cambridge Working Papers in Economics 9513, Faculty of Economics, University of Cambridge.
    14. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    15. Romulo A. Chumacero, 1999. "Estimating Stationary ARMA Models Efficiently," Computing in Economics and Finance 1999 1333, Society for Computational Economics.

  55. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Inference for Periodic Regime-Switching Models," CIRANO Working Papers 94s-15, CIRANO.

    Cited by:

    1. Smith, Aaron & Naik, Prasad A. & Tsai, Chih-Ling, 2006. "Markov-switching model selection using Kullback-Leibler divergence," Journal of Econometrics, Elsevier, vol. 134(2), pages 553-577, October.
    2. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    3. Zhao-Hua Lu & Sy-Miin Chow & Nilam Ram & Pamela M. Cole, 2019. "Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 611-645, June.
    4. Bailliu, Jeannine & Dib, Ali & Kano, Takashi & Schembri, Lawrence, 2014. "Multilateral adjustment, regime switching and real exchange rate dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 68-87.
    5. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    6. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
    7. Carvalho, Alexandre X. & Tanner, Martin A., 2007. "Modelling nonlinear count time series with local mixtures of Poisson autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5266-5294, July.

  56. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.

    Cited by:

    1. Maher Asal, 2012. "Has the Euro Boosted Equity Markets in the Euro Area?," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 1(2), pages 51-70, October.

  57. Perron, P. & Ghysels, E., 1994. "The Effect of Linear Filters on Dynamic Time series with Structural Change," Cahiers de recherche 9425, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    2. Diego Winkelried Quezada, 2003. "Indicadores adelantados de la inflación en el Perú," Monetaria, CEMLA, vol. 0(4), pages 345-382, octubre-d.
    3. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2008. "Identifying Changes in Mean, Seasonality, Persistence and Volatility for G7 and Euro Area Inflation," Centre for Growth and Business Cycle Research Discussion Paper Series 109, Economics, The University of Manchester.
    4. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    5. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2013. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working papers 2013-19, University of Connecticut, Department of Economics.
    6. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    7. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    8. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    9. Matas Mir, Antonio & Osborn, Denise R, 2004. "Seasonal adjustment and the detection of business cycle phases," Working Paper Series 357, European Central Bank.
    10. David N. Margolis, 1995. "Firm Heterogeneity and Worker Self-Selection Bias Estimated Returns to Seniority," CIRANO Working Papers 95s-04, CIRANO.
    11. Héctor A. Valle S., 2003. "Pronósticos de inflación para Guatemala hechos con modelos ARIMA y VAR," Monetaria, CEMLA, vol. 0(4), pages 407-428, octubre-d.
    12. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
    13. Erick Elder, 1999. "Investment effects of departures from governmental present-value budget balance," Applied Economics, Taylor & Francis Journals, vol. 31(10), pages 1239-1247.
    14. Denise Osborn & Marianne Sensier, 2007. "UK inflation: persistance, seasonality and monetary policy," Economics Discussion Paper Series 0716, Economics, The University of Manchester.
    15. Mauro Costantini & Sergio de Nardis, 2007. "Estimates of Structural Changes in the Wage Equation:Some Evidence for Italy," ISAE Working Papers 86, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    16. Pesaran, H.M. & Ruge-Murcia, F.J., 1995. "A Discrete-Time Version of Target Zone Models with Jumps," Cambridge Working Papers in Economics 9513, Faculty of Economics, University of Cambridge.
    17. Bataa, Erdenebat, 2012. "The Composite Leading Indicator of Mongolia," MPRA Paper 72415, University Library of Munich, Germany.
    18. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    19. Claudia Arguedas & Jorge Requena, 2003. "La dolarización en Bolivia: una estimación de la elasticidad de sustitución entre monedas," Monetaria, CEMLA, vol. 0(4), pages 383-406, octubre-d.
    20. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    21. Tomas del Barrio Castro & Denise R. Osborn, 2006. "A Random Walk through Seasonal Adjustment: Noninvertible Moving Averages and Unit Root Tests," Economics Discussion Paper Series 0612, Economics, The University of Manchester.
    22. Jesús R. González García, 2003. "La dinámica del consumo privado en México: un análisis de cointegración con cambios de régimen," Monetaria, CEMLA, vol. 0(4), pages 429-449, octubre-d.
    23. Kornelis, Marcel & Dekimpe, Marnik G. & Leeflang, Peter S.H., 2008. "Does competitive entry structurally change key marketing metrics?," International Journal of Research in Marketing, Elsevier, vol. 25(3), pages 173-182.

  58. Ghysels, E. & Sarlan, H., 1994. "On the Analysis of Business Cycles Through the Spectrum of Chronologies," Cahiers de recherche 9416, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Sprumont, Y., 1995. "On the Game-Theoretic Structure of Public-Good Economies," Cahiers de recherche 9519, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

  59. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.
    2. Eduardo Rossi & Dean Fantazzini, 2012. "Long memory and Periodicity in Intraday Volatility," DEM Working Papers Series 015, University of Pavia, Department of Economics and Management.
    3. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Working Papers 202009, University of Pretoria, Department of Economics.
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    6. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    7. Eleftherios Giovanis, 2014. "The Turn-of-the-Month-Effect: Evidence from Periodic Generalized Autoregressive Conditional Heteroskedasticity (PGARCH) Model," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(3), pages 43-61, December.
    8. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Working Papers 201925, University of Pretoria, Department of Economics.
    9. Clements, Michael P., 2002. "Comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 469-482, December.
    10. Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "Periodic stationarity of random coefficient periodic autoregressions," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 990-996, April.
    11. Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.
    12. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2014. "Precious Metals Under the Microscope: A High-Frequency Analysis," Working Papers on Finance 1409, University of St. Gallen, School of Finance.
    13. Samit Paul & Madhusudan Karmakar, 2017. "Relative Efficiency of Component GARCH-EVT Approach in Managing Intraday Market Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 21(4), pages 247-283, December.
    14. Eric Ghysels & Joann Jasiak, 1997. "GARCH for Irregularly Spaced Data: The ACD-GARCH Model," CIRANO Working Papers 97s-06, CIRANO.
    15. Manabu Asai & Michael McAleer, 2017. "The impact of jumps and leverage in forecasting covolatility," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 638-650, October.
    16. Raunig, Burkhard, 2006. "The longer-horizon predictability of German stock market volatility," International Journal of Forecasting, Elsevier, vol. 22(2), pages 363-372.
    17. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    18. Olivier Habimana, 2017. "Do flexible exchange rates facilitate external adjustment? A dynamic approach with time-varying and asymmetric volatility," International Economics and Economic Policy, Springer, vol. 14(4), pages 625-642, October.
    19. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    20. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    21. Gau, Yin-Feng & Hua, Mingshu, 2007. "Intraday exchange rate volatility: ARCH, news and seasonality effects," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(1), pages 135-158, March.
    22. Marzo, Massimiliano & Zagaglia, Paolo, 2007. "Volatility forecasting for crude oil futures," Research Papers in Economics 2007:9, Stockholm University, Department of Economics.
    23. Mingshu Hua & Chen-Yu Li, 2011. "The intraday bid-ask spread behaviour of the JPY/USD exchange rate in the EBS electronic brokerage system," Applied Economics, Taylor & Francis Journals, vol. 43(16), pages 2003-2013.
    24. Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
    25. Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
    26. Aditya Banerjee & Samit Paul, 2024. "Idiosyncrasies of Intraday Risk in Emerging and Developed Markets: Efficacy of the MCS-GARCH Model and Extreme Value Theory," Global Business Review, International Management Institute, vol. 25(2), pages 468-490, April.
    27. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    28. Remzi Uctum & Patricia Renou‐Maissant & Georges Prat & Sylvie Lecarpentier‐Moyal, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, John Wiley & Sons, vol. 35(1), pages 43-56, November.
    29. Gau, Yin-Feng, 2005. "Intraday volatility in the Taipei FX market," Pacific-Basin Finance Journal, Elsevier, vol. 13(4), pages 471-487, September.
    30. Lennart Berg, 2003. "Deterministic Seasonal Volatility in a Small and Integrated Stock Market: The Case of Sweden," Finnish Economic Papers, Finnish Economic Association, vol. 16(2), pages 61-71, Autumn.
    31. Philip Hans Franses & Richard Paap, 2000. "Modelling day-of-the-week seasonality in the S&P 500 index," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 483-488.
    32. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    33. McCullough, B. D., 2000. "Is it safe to assume that software is accurate?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 349-357.
    34. Carol Alexander & Emese Lazar, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336, April.
    35. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    36. A. Tolga Ergun, 2009. "NYSE Rule 80A restrictions on index arbitrage and market linkage," Applied Financial Economics, Taylor & Francis Journals, vol. 19(20), pages 1675-1685.
    37. G.R. Pasha & Tahira Qasim & Muhammad Aslam, 2007. "Estimating and Forecasting Volatility of Financial Time Series in Pakistan with GARCH-type Models," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 12(2), pages 115-149, Jul-Dec.
    38. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    39. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    40. Fabio Trojani & Francesco Audrino, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369.
    41. Ilias Tsiakas, 2004. "Analysis of the predictive ability of information accumulated over nights, weekends and holidays," Econometric Society 2004 Australasian Meetings 208, Econometric Society.
    42. Jang Hyung Cho & Robert T. Daigler, 2012. "An unbiased autoregressive conditional intraday seasonal variance filtering process," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 231-247, October.
    43. Hu, Junjie & Kuo, Weiyu & Härdle, Wolfgang Karl, 2019. "Risk of Bitcoin Market: Volatility, Jumps, and Forecasts," IRTG 1792 Discussion Papers 2019-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    44. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Gold Volatility: Is there a Role of Geopolitical Risks?," Working Papers 201943, University of Pretoria, Department of Economics.
    45. H. J. Turtle & Kainan Wang, 2014. "Modeling Conditional Covariances With Economic Information Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 217-236, April.
    46. H. D. Vinod & B. D. McCullough, 1999. "The Numerical Reliability of Econometric Software," Journal of Economic Literature, American Economic Association, vol. 37(2), pages 633-665, June.
    47. Korkusuz, Burak & Kambouroudis, Dimos & McMillan, David G., 2023. "Do extreme range estimators improve realized volatility forecasts? Evidence from G7 Stock Markets," Finance Research Letters, Elsevier, vol. 55(PB).
    48. Gerhard, Frank & Hautsch, Nikolaus, 1999. "Volatility Estimation on the Basis of Price Intensities," CoFE Discussion Papers 99/19, University of Konstanz, Center of Finance and Econometrics (CoFE).
    49. Siem Jan Koopman & Marius Ooms & M. Angeles Carnero, 2005. "Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 05-091/4, Tinbergen Institute.
    50. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1997. "Seasonal Adjustment and Volatility Dynamics," CIRANO Working Papers 97s-39, CIRANO.
    51. Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
    52. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    53. Christian Conrad & Robert F. Engle, 2021. "Modelling Volatility Cycles: The (MF)2 GARCH Model," Working Paper series 21-05, Rimini Centre for Economic Analysis.
    54. Bibi, Abdelouahab & Lescheb, Ines, 2010. "Strong consistency and asymptotic normality of least squares estimators for PGARCH and PARMA-PGARCH models," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1532-1542, October.
    55. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    56. P. S. Sephton, 2000. "Financial analysis package for GAUSS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(4), pages 433-438.
    57. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    58. B.B. Chakrabarti & Vivek Rajvanshi, 2017. "Intraday Periodicity and Volatility Forecasting: Evidence from Indian Crude Oil Futures Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 16(1), pages 1-28, April.
    59. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
    60. Elda du Toit & John Henry Hall & Rudra Prakash Pradhan, 2018. "The day-of-the-week effect: South African stock market indices," African Journal of Economic and Management Studies, Emerald Group Publishing Limited, vol. 9(2), pages 197-212, June.
    61. Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.
    62. Massimiliano Caporin & Francesco Lisi, 2010. "Misspecification tests for periodic long memory GARCH models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(1), pages 47-62, March.
    63. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    64. Aknouche Abdelhakim & Demmouche Nacer & Dimitrakopoulos Stefanos & Touche Nassim, 2020. "Bayesian analysis of periodic asymmetric power GARCH models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-24, September.
    65. Anupam Dutta & Kakali Kanjilal & Sajal Ghosh & Donghyun Park & Gazi Salah Uddin, 2023. "Impact of crude oil volatility jumps on sustainable investments: Evidence from India," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1450-1468, October.
    66. Tang, Yusui & Ma, Feng, 2023. "The volatility of natural resources implications for sustainable development: Crude oil volatility prediction based on the multivariate structural regime switching," Resources Policy, Elsevier, vol. 83(C).
    67. Atilla Çifter & Alper Özün, 2007. "The Predictive Performance of Asymmetric Normal Mixture GARCH in Risk Management: Evidence from Turkey," Journal of BRSA Banking and Financial Markets, Banking Regulation and Supervision Agency, vol. 1(1), pages 7-34.
    68. Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
    69. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    70. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    71. Christos Avdoulas & Stelios Bekiros & Sabri Boubaker, 2018. "Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 307-333, March.
    72. Bernd Hayo & Ali M. Kutan, 2004. "The Impact of News, Oil Prices, and Global Market Developments on Russian Financial Markets," William Davidson Institute Working Papers Series 2004-656, William Davidson Institute at the University of Michigan.
    73. Hua, Mingshu & Gau, Yin-Feng, 2006. "Determinants of periodic volatility of intraday exchange rates in the Taipei FX Market," Pacific-Basin Finance Journal, Elsevier, vol. 14(2), pages 193-208, April.
    74. Abdelhakim Aknouche & Abdelouahab Bibi, 2009. "Quasi‐maximum likelihood estimation of periodic GARCH and periodic ARMA‐GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 19-46, January.
    75. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," EconomiX Working Papers 2018-14, University of Paris Nanterre, EconomiX.
    76. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    77. Souza, Leonardo & Veiga, Alvaro & Medeiros, Marcelo C., 2005. "Evaluating the Forecasting Performance of GARCH Models Using White’s Reality Check," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 25(1), May.
    78. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    79. Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
    80. Hoerova, Marie & Bekaert, Geert, 2014. "The VIX, the variance premium and stock market volatility," Working Paper Series 1675, European Central Bank.
    81. Vicent AragO-Manzana & M Angeles Fernandezizquierdo, 2003. "Monthly seasonality of the returns and volatility of the IBEX-35 index and its futures contract," Applied Economics Letters, Taylor & Francis Journals, vol. 10(3), pages 129-133.
    82. Giovanis, Eleftherios, 2009. "Calendar Effects and Seasonality on Returns and Volatility," MPRA Paper 64404, University Library of Munich, Germany.
    83. Harald Badinger, 2006. "Fiscal shocks, output dynamics and macroeconomic stability: an empirical assessment for Austria (1983–2002)," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 33(5), pages 267-284, December.
    84. Chelsey Hill & B. D. McCullough, 2019. "On The Accuracy of GARCH Estimation in R Packages," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(2), pages 133-156, December.
    85. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    86. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
    87. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: intra-day vs. inter-day models," MPRA Paper 80434, University Library of Munich, Germany.
    88. Denise R. Osborn & Christos S. Savva & Len Gill, 2008. "Periodic Dynamic Conditional Correlations between Stock Markets in Europe and the US," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 307-325, Summer.
    89. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    90. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    91. Karmakar, Madhusudan & Paul, Samit, 2019. "Intraday portfolio risk management using VaR and CVaR:A CGARCH-EVT-Copula approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 699-709.
    92. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    93. Jose Sanchez-Fung, 2003. "Non-linear modelling of daily exchange rate returns, volatility, and 'news' in a small developing economy," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 247-250.
    94. Nazim Regnard & Jean‐Michel Zakoïan, 2010. "Structure and estimation of a class of nonstationary yet nonexplosive GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 348-364, September.
    95. Shen, Zhiwei & Ritter, Matthias, 2015. "Forecasting volatility of wind power production," SFB 649 Discussion Papers 2015-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    96. Chang, Yuanchen & Taylor, Stephen J., 2003. "Information arrivals and intraday exchange rate volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(2), pages 85-112, April.
    97. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
    98. Karanasos, Menelaos & Paraskevopoulos, Alexandros G. & Menla Ali, Faek & Karoglou, Michail & Yfanti, Stavroula, 2014. "Modelling stock volatilities during financial crises: A time varying coefficient approach," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 113-128.
    99. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    100. Liu, Li & Zhang, Tao, 2015. "Economic policy uncertainty and stock market volatility," Finance Research Letters, Elsevier, vol. 15(C), pages 99-105.
    101. So, Mike K.P. & Chung, Ray S.W., 2014. "Dynamic seasonality in time series," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 212-226.
    102. Bibi, Abdelouahab & Lescheb, Ines, 2014. "A note on integrated periodic GARCH processes," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 121-124.
    103. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    104. Weng, Haijie & Trück, Stefan, 2011. "Style analysis and Value-at-Risk of Asia-focused hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 19(5), pages 491-510, November.
    105. Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "On some probabilistic properties of double periodic AR models," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 407-413, February.
    106. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    107. Regnard, Nazim & Zakoian, Jean-Michel, 2010. "A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices," MPRA Paper 22642, University Library of Munich, Germany.
    108. Peter Winker & Dietmar Maringer, 2009. "The convergence of estimators based on heuristics: theory and application to a GARCH model," Computational Statistics, Springer, vol. 24(3), pages 533-550, August.
    109. Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2020. "Temporal mixture ensemble models for intraday volume forecasting in cryptocurrency exchange markets," Papers 2005.09356, arXiv.org, revised Dec 2020.
    110. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    111. Wang, Meng & Chen, Zhao & Wang, Christina Dan, 2018. "Composite quantile regression for GARCH models using high-frequency data," Econometrics and Statistics, Elsevier, vol. 7(C), pages 115-133.
    112. Saïd Souam & Faycal Hamdi, 2018. "Mixture Periodic GARCH Models: Theory and Applications," Post-Print hal-01589209, HAL.
    113. Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
    114. Ilias Tsiakas, 2010. "The Economic Gains Of Trading Stocks Around Holidays," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 1-26, March.
    115. Nadia Boussaha & Faycal Hamdi & Saïd Souam, 2018. "Multivariate Periodic Stochastic Volatility Models: Applications to Algerian dinar exchange rates and oil prices modeling," Working Papers hal-04141780, HAL.
    116. Lenart, Łukasz, 2013. "Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 252-269.
    117. Ruud H. Koning, 2004. "FinMetrics: analysis of financial data in S-PLUS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 283-290.
    118. Pesaran, H.M. & Ruge-Murcia, F.J., 1995. "A Discrete-Time Version of Target Zone Models with Jumps," Cambridge Working Papers in Economics 9513, Faculty of Economics, University of Cambridge.
    119. Kyrtsou, Catherine & Malliaris, Anastasios G., 2009. "The impact of information signals on market prices when agents have non-linear trading rules," Economic Modelling, Elsevier, vol. 26(1), pages 167-176, January.
    120. Fabrice Hervé, 2006. "Les fonds de pension protègent-ils les investisseurs des évolutions du marché?," Working Papers CREGO 1060101, Université de Bourgogne - CREGO EA7317 Centre de recherches en gestion des organisations.
    121. Thomas Walther & Tony Klein, 2018. "Exogenous Drivers of Cryptocurrency Volatility - A Mixed Data Sampling Approach To Forecasting," Working Papers on Finance 1815, University of St. Gallen, School of Finance.
    122. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
    123. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    124. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    125. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    126. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.
    127. Łukasz Lenart & Mateusz Pipień, 2015. "Empirical Properties of the Credit and Equity Cycle within Almost Periodically Correlated Stochastic Processes - the Case of Poland, UK and USA," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(3), pages 169-186, September.
    128. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
    129. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
    130. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    131. Aknouche, Abdelhakim & Bentarzi, Mohamed, 2008. "On the existence of higher-order moments of periodic GARCH models," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3262-3268, December.
    132. Haniff, Mohd Nizal & Pok, Wee Ching, 2010. "Intraday volatility and periodicity in the Malaysian stock returns," Research in International Business and Finance, Elsevier, vol. 24(3), pages 329-343, September.
    133. Bentarzi, M. & Hamdi, F., 2008. "Mixture periodic autoregressive conditional heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 1-16, September.
    134. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    135. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    136. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
    137. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    138. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    139. Sylvie Lecarpentier-Moyal & Georges Prat & Patricia Renou-Maissant & Remzi Uctum, 2013. "Persistence of announcement effects on the intraday volatility of stock returns: evidence from individual data," Working Papers hal-04141172, HAL.
    140. Lin, Yan-Xia & McCrae, Michael & M. Gulati, Chandra, 1998. "Cointegration between exchange rates: a generalized linear cointegration model," Journal of Multinational Financial Management, Elsevier, vol. 8(2-3), pages 333-352, September.
    141. Madhusudan Karmakar & Girja Kant Shukla, 2016. "The Effect of Spillover on Volatility Forecasting: An Empirical Study in Indian Stock Market," Metamorphosis: A Journal of Management Research, , vol. 15(1), pages 20-30, June.
    142. Ramírez-Orellana, Alicia & Martínez-Victoria, MCarmen & García-Amate, Antonio & Rojo-Ramírez, Alfonso A., 2023. "Is the corporate financial strategy in the oil and gas sector affected by ESG dimensions?," Resources Policy, Elsevier, vol. 81(C).
    143. Alex Huang, 2011. "Volatility Modeling by Asymmetrical Quadratic Effect with Diminishing Marginal Impact," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 301-330, March.
    144. Thibault Vatter & Hau-Tieng Wu & Valérie Chavez-Demoulin & Bin Yu, 2015. "Non-Parametric Estimation of Intraday Spot Volatility: Disentangling Instantaneous Trend and Seasonality," Econometrics, MDPI, vol. 3(4), pages 1-24, December.
    145. Dutta, Anupam & Uddin, Gazi Salah & Sheng, Lin Wen & Park, Donghyun & Zhu, Xuening, 2024. "Volatility dynamics of agricultural futures markets under uncertainties," Energy Economics, Elsevier, vol. 136(C).
    146. Darmoul Mokhtar, 2006. "The impact of monetary policy signals on the intradaily Euro-dollar volatility," Cahiers de la Maison des Sciences Economiques bla06049, Université Panthéon-Sorbonne (Paris 1).
    147. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
    148. Hayo, Bernd & Kutan, Ali M., 2005. "IMF-related news and emerging financial markets," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1126-1142, November.
    149. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    150. Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
    151. Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
    152. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
    153. Bruno Bosco & Lucia Parisio & Matteo Pelagatti, 2007. "Deregulated Wholesale Electricity Prices in Italy: An Empirical Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 13(4), pages 415-432, November.
    154. Leonardo Souza & Alvaro Veiga & Marcelo C. Medeiros, 2002. "Evaluating the performance of GARCH models using White´s Reality Check," Textos para discussão 453, Department of Economics PUC-Rio (Brazil).
    155. Dutta, Anupam & Park, Donghyun & Uddin, Gazi Salah & Kanjilal, Kakali & Ghosh, Sajal, 2024. "Do dirty and clean energy investments react to infectious disease-induced uncertainty?," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    156. Esta Lestari, 2010. "Volatility Spillover Effects in East Asian Capital Markets: A Case Study of the Real Estate Sectors," Economics and Finance in Indonesia, Faculty of Economics and Business, University of Indonesia, vol. 58, pages 57-82, April.
    157. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    158. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
    159. Degiannakis, Stavros & Floros, Christos, 2010. "VIX Index in Interday and Intraday Volatility Models," MPRA Paper 96304, University Library of Munich, Germany.
    160. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    161. Y. -F. Gau & M. Hau, 2004. "Public information, private information, inventory control, and volatility of intraday NTD/USD exchange rates," Applied Economics Letters, Taylor & Francis Journals, vol. 11(4), pages 263-266.

  60. Ghysels, E., 1993. "Seasonal Adjustment and Other Data Transformations," Cahiers de recherche 9322, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Robin L. Lumsdaine & Mr. Eswar S Prasad, 1999. "Identifying the Common Component in International Economic Fluctuations: A New Approach," IMF Working Papers 1999/154, International Monetary Fund.
    2. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    3. Maravall, Agustin, 2006. "An application of the TRAMO-SEATS automatic procedure; direct versus indirect adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2167-2190, May.
    4. Roberto Astolfi & Dominique Ladiray & Gian Luigi Mazzi, 2001. "Business Cycle Extraction of Euro-Zone GDP: Direct versus Indirect Approach," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(3), pages 377-398.
    5. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1995. "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process?," CIRANO Working Papers 95s-19, CIRANO.
    6. Robin L. Lumsdaine & Eswar S. Prasad, 1997. "Identifying the Common Component in International Economic Fluctuations," NBER Working Papers 5984, National Bureau of Economic Research, Inc.
    7. Raymund Abara, 2006. "Estimation and evaluation of asset pricing models with habit formation using Philippine data," Applied Economics Letters, Taylor & Francis Journals, vol. 13(8), pages 493-497.

  61. Eric Ghysels, 1993. "A time series model with periodic stochastic regime switching," Discussion Paper / Institute for Empirical Macroeconomics 84, Federal Reserve Bank of Minneapolis.

    Cited by:

    1. Serhii Lupenko, 2022. "The Mathematical Model of Cyclic Signals in Dynamic Systems as a Cyclically Correlated Random Process," Mathematics, MDPI, vol. 10(18), pages 1-27, September.
    2. Geert Bekaert & Campbell R. Harvey, 1994. "Time-Varying World Market Integration," NBER Working Papers 4843, National Bureau of Economic Research, Inc.
    3. Amato, Amedeo & Tronzano, Marco, 2000. "Fiscal policy, debt management and exchange rate credibility: Lessons from the recent Italian experience," Journal of Banking & Finance, Elsevier, vol. 24(6), pages 921-943, June.
    4. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    5. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Inference for Periodic Regime-Switching Models," CIRANO Working Papers 94s-15, CIRANO.
    6. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
    7. Madura, Jeff & Ngo, Thanh & Viale, Ariel M., 2011. "Convergent synergies in the global market for corporate control," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2468-2478, September.
    8. Al-Mohamed, Somar & Elkanj, Nasser & Gangopadhyay, Partha, 2018. "Time-Varying Integration of MENA Stock Markets," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 8(2), pages 85-114.
    9. Ghysels, Eric, 1997. "On seasonality and business cycle durations: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 79(2), pages 269-290, August.

  62. Ghysels, E. & Hall, A., 1993. "The Periodic Time Series and Testing the Unit Root Hypothesis," Cahiers de recherche 9325, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.

  63. Ghysels, E. & Lieberman, O., 1993. "Dynamic Regression and Filtered Data Series: A Laplace Approximation to the Effects of Filtering in Small Samples," Cahiers de recherche 9335, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Judd, Kenneth L., 1996. "Approximation, perturbation, and projection methods in economic analysis," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 12, pages 509-585, Elsevier.
    2. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    3. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1995. "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process?," CIRANO Working Papers 95s-19, CIRANO.

  64. Ghysels, E. & Lee, H.S. & Siklos, P.L., 1992. "On the (Mis)Specification of Seasonality and Its Consequences: An Empirical Investigation With U.S. Data," Cahiers de recherche 9237, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. R. Anton Braun & Charles L. Evans, 1994. "Seasonality and equilibrium business cycle theories," Staff Report 168, Federal Reserve Bank of Minneapolis.
    2. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2010. "House prices, collateral constraint, and the asymmetric effect on consumption," Journal of Housing Economics, Elsevier, vol. 19(1), pages 26-37, March.
    3. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
    4. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    5. Smith, Jeremy & Otero, Jesus, 1997. "Structural breaks and seasonal integration," Economics Letters, Elsevier, vol. 56(1), pages 13-19, September.
    6. Engelbert Stockhammer & Robert Calvert Jump & Karsten Kohler & Julian Cavallero, 2018. "Short and medium term financial-real cycles: An empirical assessment," FMM Working Paper 29-2018, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    7. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    9. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    10. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    11. Shen Chung-Hua & Huang Tai-Hsin, 1999. "Money Demand and Seasonal Cointegration," International Economic Journal, Taylor & Francis Journals, vol. 13(3), pages 97-123.
    12. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    13. Lee, Hahn Shik & Siklos, Pierre L., 1997. "The role of seasonality in economic time series reinterpreting money-output causality in U.S. data," International Journal of Forecasting, Elsevier, vol. 13(3), pages 381-391, September.
    14. Hecq, Alain, 1998. "Does seasonal adjustment induce common cycles?," Economics Letters, Elsevier, vol. 59(3), pages 289-297, June.
    15. Gianluca Cubadda, 1999. "Common cycles in seasonal non‐stationary time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May.
    16. Huang, Tai-Hsin & Shen, Chung-Hua, 1999. "Applying the seasonal error correction model to the demand for international reserves in Taiwan," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 107-131, January.
    17. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    18. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    19. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    20. Albertson, Kevin & Aylen, Jonathan, 1999. "Forecasting using a periodic transfer function: with an application to the UK price of ferrous scrap," International Journal of Forecasting, Elsevier, vol. 15(4), pages 409-419, October.

  65. Canova, F. & Ghysels, E., 1992. "Changes in Seasonal Patters: Are They Cyclical," Cahiers de recherche 9216, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. El Montasser, Ghassen, 2014. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 54920, University Library of Munich, Germany.
    2. Robin L. Lumsdaine & Mr. Eswar S Prasad, 1999. "Identifying the Common Component in International Economic Fluctuations: A New Approach," IMF Working Papers 1999/154, International Monetary Fund.
    3. Ghysels, Eric & Lee, Hahn S & Siklos, Pierre L, 1993. "On the (Mis)Specification of Seasonality and Its Consequences: An Empirical Investigation with U.S. Data," Empirical Economics, Springer, vol. 18(4), pages 747-760.
    4. S. Krane & W. Wascher, 1999. "The cyclical sensitivity of seasonality in US employment," BIS Working Papers 67, Bank for International Settlements.
    5. Perron, P. & Ghysels, E., 1994. "The Effect of Linear Filters on Dynamic Time series with Structural Change," Cahiers de recherche 9425, Universite de Montreal, Departement de sciences economiques.
    6. Siem Jan Koopman & Philip Hans Franses, 2002. "Constructing Seasonally Adjusted Data with Time‐varying Confidence Intervals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 509-526, December.
    7. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    8. Cho, Sungwon, 1998. "Time-series implications of the permanent income hypothesis on durable goods consumption," ISU General Staff Papers 1998010108000012849, Iowa State University, Department of Economics.
    9. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    10. Matas-Mir, Antonio & Osborn, Denise R., 2004. "Does seasonality change over the business cycle? An investigation using monthly industrial production series," European Economic Review, Elsevier, vol. 48(6), pages 1309-1332, December.
    11. Kavussanos, Manolis G. & Alizadeh-M, Amir H., 2002. "Seasonality patterns in tanker spot freight rate markets," Economic Modelling, Elsevier, vol. 19(5), pages 747-782, November.
    12. Franses, Ph.H.B.F. & de Bruin, P., 1999. "Seasonal adjustment and the business cycle in unemployment," Econometric Institute Research Papers EI 9923-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    14. D R Osborn & A Matas-Mir, 2003. "The Extent of Seasonal/Business Cycle Interactions in European Industrial Production," Centre for Growth and Business Cycle Research Discussion Paper Series 38, Economics, The University of Manchester.
    15. Ahdi Ajmi & Adnen Ben Nasr & Mohamed Boutahar, 2008. "Seasonal Nonlinear Long Memory Model for the US Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 31(3), pages 243-254, April.
    16. Ramsey, James B. & Keenan, Sean, 1996. "Multi-country tests for the oscillator model with slowly varying coefficients," Journal of Economic Behavior & Organization, Elsevier, vol. 30(3), pages 383-408, September.
    17. Dick van Dijk 1 & Birgit Strikholm & Timo Teräsvirta, 2003. "The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 79-98, June.
    18. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    19. El Montasser, Ghassen, 2012. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 45110, University Library of Munich, Germany, revised 04 Mar 2014.
    20. Ghassen El Montasser, 2015. "The Seasonal KPSS Test: Examining Possible Applications with Monthly Data and Additional Deterministic Terms," Econometrics, MDPI, vol. 3(2), pages 1-16, May.
    21. John Wells, 1999. "Seasonality, leading indicators, and alternative business cycle theories," Applied Economics, Taylor & Francis Journals, vol. 31(5), pages 531-538.
    22. Matas Mir, Antonio & Osborn, Denise R, 2004. "Seasonal adjustment and the detection of business cycle phases," Working Paper Series 357, European Central Bank.
    23. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    24. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    25. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    26. Mitsuhiro Kaneda & Gil Mehrez, 1998. "Seasonal Fluctuations and International Trade," International Trade 9809001, University Library of Munich, Germany.
    27. Martelotte Marcela Cohen & Souza Reinaldo Castro & Silva Eduardo Antônio Barros da, 2017. "Design of Seasonal Adjustment Filter Robust to Variations in the Seasonal Behaviour of Time Series," Journal of Official Statistics, Sciendo, vol. 33(1), pages 155-186, March.
    28. Craig, Lee A. & Holt, Matthew T., 2008. "Mechanical refrigeration, seasonality, and the hog-corn cycle in the United States: 1870-1940," Explorations in Economic History, Elsevier, vol. 45(1), pages 30-50, January.
    29. Emara, Noha & Ma, Jinpeng, 2019. "An Analysis of the Seasonal Cycle and the Business Cycle," MPRA Paper 99310, University Library of Munich, Germany.
    30. Kaushik Bhattacharya & Sunny Kumar Singh, 2016. "Impact of Payment Technology on Seasonality of Currency in Circulation: Evidence from the USA and India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(1), pages 117-136, June.
    31. Nasir Hamid Rao & Syed Kalim Hyder Bukhari & Abdul Jalil, 2011. "Detection and Forecasting of Islamic Calendar Effects in Time Series Data: Revisited," Working Papers id:4290, eSocialSciences.
    32. Ghysels, Eric, 1997. "On seasonality and business cycle durations: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 79(2), pages 269-290, August.
    33. Wen, Yi, 2002. "The business cycle effects of Christmas," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1289-1314, September.
    34. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
    35. Dalibor Stevanovic & Stéphane Surprenant & Rachidi Kotchoni, 2019. "Identification des points de retournement du cycle économique au Canada," CIRANO Project Reports 2019rp-05, CIRANO.
    36. Franses, Philip Hans & Draisma, Gerrit, 1997. "Recognizing changing seasonal patterns using artificial neural networks," Journal of Econometrics, Elsevier, vol. 81(1), pages 273-280, November.
    37. Piotr Białowolski & Tomasz Kuszewski & Bartosz Witkowski, 2012. "Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 6(1), March.

  66. Campbell, B. & Ghysels, E., 1992. "Is the Outcome of the Federal Budget Process Unbaised and Efficient? A NonParametric Assessment," Cahiers de recherche 9217, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.

  67. Eric Ghysels, 1992. "On the Periodic Structure of the Business Cycle," Cowles Foundation Discussion Papers 1028, Cowles Foundation for Research in Economics, Yale University.

    Cited by:

    1. Mehmet Balcilar & Reneé van Eyden & Josine Uwilingiye & Rangan Gupta, 2014. "The impact of oil price on South African GDP growth: A Bayesian Markov Switching-VAR analysis," Working Papers 201470, University of Pretoria, Department of Economics.
    2. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
    3. Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00658540, HAL.
    4. Liu, Wen-Hsien & Chyi, Yih-Luan, 2006. "A Markov regime-switching model for the semiconductor industry cycles," Economic Modelling, Elsevier, vol. 23(4), pages 569-578, July.
    5. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Regime Switching Model of US Crude Oil and Stock Market Prices: 1859 to 2013," Working papers 2014-26, University of Connecticut, Department of Economics.
    6. Francis X. Diebold & Glenn D. Rudebusch, 1994. "Measuring Business Cycles: A Modern Perspective," NBER Working Papers 4643, National Bureau of Economic Research, Inc.
    7. Chen, Shyh-Wei, 2006. "Simultaneously modeling the volatility of the growth rate of real GDP and determining business cycle turning points: Evidence from the U.S., Canada and the UK," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(2), pages 87-102.
    8. Andrew J. Filardo & Stephen F. Gordon, 1993. "Business cycle durations," Research Working Paper 93-11, Federal Reserve Bank of Kansas City.
    9. Chunming Yuan, 2008. "The Exchange Rate and Macroeconomic Determinants: Time-Varying Transitional Dynamics," UMBC Economics Department Working Papers 09-114, UMBC Department of Economics, revised 01 Nov 2009.
    10. Klaassen, F.J.G.M., 1999. "Long Swings in Exchange Rates : Are They Really in the Data?," Other publications TiSEM a54d23f3-13a8-458c-9f80-2, Tilburg University, School of Economics and Management.
    11. Shively, Philip A., 2004. "The size and dynamic effect of aggregate-demand and aggregate-supply disturbances in expansionary and contractionary regimes," Journal of Macroeconomics, Elsevier, vol. 26(1), pages 83-99, March.
    12. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    13. Serhii Lupenko, 2022. "The Mathematical Model of Cyclic Signals in Dynamic Systems as a Cyclically Correlated Random Process," Mathematics, MDPI, vol. 10(18), pages 1-27, September.
    14. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    15. Laura Birg & Anna Goeddeke, 2016. "Christmas Economics—A Sleigh Ride," Economic Inquiry, Western Economic Association International, vol. 54(4), pages 1980-1984, October.
    16. Matas-Mir, Antonio & Osborn, Denise R., 2004. "Does seasonality change over the business cycle? An investigation using monthly industrial production series," European Economic Review, Elsevier, vol. 48(6), pages 1309-1332, December.
    17. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Klaassen, F.J.G.M., 1999. "Purchasing Power Parity : Evidence from a New Test," Other publications TiSEM 91e73eb9-a023-4fdb-bd70-b, Tilburg University, School of Economics and Management.
    19. De Toldi, M. & Gourieroux, C. & Monfort, A., 1995. "Prepayment analysis for securitization," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 45-70, March.
    20. D R Osborn & A Matas-Mir, 2003. "The Extent of Seasonal/Business Cycle Interactions in European Industrial Production," Centre for Growth and Business Cycle Research Discussion Paper Series 38, Economics, The University of Manchester.
    21. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    22. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    23. John Wells, 1999. "Seasonality, leading indicators, and alternative business cycle theories," Applied Economics, Taylor & Francis Journals, vol. 31(5), pages 531-538.
    24. Giles, David E., 2005. "Testing for a Santa Claus effect in growth cycles," Economics Letters, Elsevier, vol. 87(3), pages 421-426, June.
    25. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    26. Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Post-Print halshs-00658540, HAL.
    27. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 201230, University of Pretoria, Department of Economics.
    28. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    29. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Inference for Periodic Regime-Switching Models," CIRANO Working Papers 94s-15, CIRANO.
    30. Peria, Maria Soledad Martinez, 1999. "A regime - switching approach to studying speculative attacks : focus on European Monetary System crises," Policy Research Working Paper Series 2132, The World Bank.
    31. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    32. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
    33. Balcilar, Mehmet & Hammoudeh, Shawkat & Asaba, Nwin-Anefo Fru, 2015. "A regime-dependent assessment of the information transmission dynamics between oil prices, precious metal prices and exchange rates," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 72-89.
    34. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    35. Huang, Tai-Hsin & Shen, Chung-Hua, 1999. "Applying the seasonal error correction model to the demand for international reserves in Taiwan," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 107-131, January.
    36. Nurgun Topalli & İbrahim Dogan, 2016. "The structure and sustainability of current account deficit: Turkish evidence from regime switching," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(4), pages 570-589, June.
    37. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    38. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    39. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    40. Warren Dean & Robert Faff, 2008. "Evidence of feedback trading with Markov switching regimes," Review of Quantitative Finance and Accounting, Springer, vol. 30(2), pages 133-151, February.
    41. Ghysels, Eric, 1997. "On seasonality and business cycle durations: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 79(2), pages 269-290, August.
    42. Wen, Yi, 2002. "The business cycle effects of Christmas," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1289-1314, September.
    43. Albertson, Kevin & Aylen, Jonathan, 1999. "Forecasting using a periodic transfer function: with an application to the UK price of ferrous scrap," International Journal of Forecasting, Elsevier, vol. 15(4), pages 409-419, October.
    44. Shyh-Wei Chen & Chung-Hua Shen, 2006. "Is there a duration dependence in Taiwan's business cycles?," International Economic Journal, Taylor & Francis Journals, vol. 20(1), pages 109-128.

  68. Eric Ghysels, 1992. "Christmas, Spring and the Dawning of Economic Recovery," Cowles Foundation Discussion Papers 1027, Cowles Foundation for Research in Economics, Yale University.

    Cited by:

    1. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.

  69. Dufour, J.M. & Ghysels, E. & Hall, A., 1992. "Generalized Predictive Tests and Structural Change Analysis in Econometrics," Cahiers de recherche 9223, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. DUFOUR, Jean-Marie & PELLETIER, Denis & RENAULT, Éric, 2003. "Short Run and Long Run Causality in Time Series : Inference," Cahiers de recherche 14-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    3. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    4. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    5. Tommaso Mancini Griffoli, 2006. "Explaining the Euro's Effect on Trade? Interest Rates in an Augmented Gravity Equation," IHEID Working Papers 10-2006, Economics Section, The Graduate Institute of International Studies.
    6. Benner, Joachim & Carstensen, Kai & Gern, Klaus-Jürgen & Oskamp, Frank & Scheide, Joachim, 2004. "Euroland: Konjunktur verliert wieder an Fahrt," Open Access Publications from Kiel Institute for the World Economy 3371, Kiel Institute for the World Economy (IfW Kiel).
    7. Garcia, Rene & Ghysels, Eric, 1998. "Structural change and asset pricing in emerging markets," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 455-473, June.
    8. Eric Ghysels & Alain Guay, 1998. "Structural Change Tests for Simulated Method of Moments," CIRANO Working Papers 98s-19, CIRANO.
    9. Rossi, Barbara & Giacomini, Raffaella, 2005. "How Stable is the Forecasting Performance of the Yield Curve for Outpot Growth?," Working Papers 05-08, Duke University, Department of Economics.
    10. Pauwels Laurent L. & Chan Felix & Mancini Griffoli Tommaso, 2012. "Testing for Structural Change in Heterogeneous Panels with an Application to the Euro's Trade Effect," Journal of Time Series Econometrics, De Gruyter, vol. 4(2), pages 1-35, November.
    11. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    12. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    13. Patrick Richard, 2010. "Kernel smoothing end of sample instability tests P values," Cahiers de recherche 10-19, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    14. Benner, Joachim & Carstensen, Kai & Gern, Klaus-Jürgen & Oskamp, Frank & Scheide, Joachim, 2004. "Euroland: Recovery will slow down," Kiel Discussion Papers 415, Kiel Institute for the World Economy (IfW Kiel).
    15. Oliner, Stephen D. & Rudebusch, Glenn D. & Sichel, Daniel, 1996. "The Lucas critique revisited assessing the stability of empirical Euler equations for investment," Journal of Econometrics, Elsevier, vol. 70(1), pages 291-316, January.
    16. Ghysels, Eric & Guay, Alain, 2004. "Testing For Structural Change In The Presence Of Auxiliary Models," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1168-1202, December.
    17. KUROZUMI, Eiji & 黒住, 英司, 2017. "Confidence Sets for the Date of a Mean Shift at the End of a Sample," Discussion Papers 2017-06, Graduate School of Economics, Hitotsubashi University.
    18. Tommaso Mancini-Griffoli & Laurent L. Pauwels, 2006. "Is There a Euro Effect on Trade? An Application of End-of-Sample Structural Break Tests for Panel Data," IHEID Working Papers 04-2006, Economics Section, The Graduate Institute of International Studies, revised Apr 2006.
    19. Eiji Kurozumi, 2018. "Confidence Sets for the Date of a Structural Change at the End of a Sample," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 850-862, November.
    20. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    21. Colavecchio, Roberta & Carstensen, Kai, 2004. "Did the Revision of the ECB Monetary Policy Strategy Affect the Reaction Function?," Kiel Working Papers 1221, Kiel Institute for the World Economy (IfW Kiel).

  70. Ghysels, E., 1991. "On Scoring Asymmetric Periodic Probability Models of Turning-Point Forecasts," Cahiers de recherche 9130, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.

  71. Ghysels, E., 1991. "Are Business Cycle Turning Points Uniformly Distributed Throughout the Year?," Cahiers de recherche 9135, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. S. Krane & W. Wascher, 1999. "The cyclical sensitivity of seasonality in US employment," BIS Working Papers 67, Bank for International Settlements.
    2. Franses, Philip Hans, 1995. "The effects of seasonally adjusting a periodic autoregressive process," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 683-704, June.
    3. Russell Cooper & John Haltiwanger, 1990. "The Aggregate Implications of Machine Replacement: Theory and Evidence," NBER Working Papers 3552, National Bureau of Economic Research, Inc.
    4. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    5. Ghysels, E., 1992. "Charistmas, Spring and the Dawning of Economic Recovery," Cahiers de recherche 9215, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. De Toldi, M. & Gourieroux, C. & Monfort, A., 1995. "Prepayment analysis for securitization," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 45-70, March.
    7. Broersma, L. & Franses, P.H., 1992. "A model for quarterly unemployment in Canada," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    8. Ghysels, Eric, 1997. "On seasonality and business cycle durations: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 79(2), pages 269-290, August.

  72. Ghysels, E. & Lee, H.S. & Noh, J., 1991. "Testing for Unit Roots in Sesonal Time Series ; Some Theoretical and Monte Carlo Investigation," Cahiers de recherche 9131, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
    2. Neil R. Ericsson & David F. Hendry & Hong-Anh Tran, 1993. "Cointegration, seasonality, encompassing, and the demand for money in the United Kingdom," International Finance Discussion Papers 457, Board of Governors of the Federal Reserve System (U.S.).
    3. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    4. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.

  73. Ghysels, E., 1990. "The Business Cycle, The Seasonal Cycle Or Just Any Cycle," Cahiers de recherche 9036, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. R. Anton Braun & Charles L. Evans, 1994. "Seasonality and equilibrium business cycle theories," Staff Report 168, Federal Reserve Bank of Minneapolis.
    2. Jeffrey A. Miron, 1990. "The Economics of Seasonal Cycles," NBER Working Papers 3522, National Bureau of Economic Research, Inc.

  74. Ghysels, E., 1990. "On The Economic And Econometrics Of Seasonality," Cahiers de recherche 9028, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. R. Anton Braun & Charles L. Evans, 1994. "Seasonality and equilibrium business cycle theories," Staff Report 168, Federal Reserve Bank of Minneapolis.
    2. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    3. Braun, R Anton & Evans, Charles L, 1998. "Seasonal Solow Residuals and Christmas: A Case for Labor Hoarding and Increasing Returns," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(3), pages 306-330, August.
    4. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    5. Ghysels, E., 1992. "Charistmas, Spring and the Dawning of Economic Recovery," Cahiers de recherche 9215, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Antonio Aguirre & Andreu Sansó, 2002. "Using different null hypotheses to test for seasonal unit roots in economic time series," Económica, Instituto de Investigaciones Económicas, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 0(1-2), pages 3-26, January-D.
    8. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    9. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    10. Tim Bollerslev & Eric Ghysels, 1994. "On Periodic Autogressive Conditional Heteroskedasticity," CIRANO Working Papers 94s-03, CIRANO.
    11. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.
    12. Campos, Julia, 1991. "A Brief Look on the Literature on Deseasonalization," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 11(2), November.
    13. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.

  75. Ghysels, E. & Perron, P., 1990. "The Effect Of Seasonal Adjustment Filters On Tests For A Unit Root," Papers 355, Princeton, Department of Economics - Econometric Research Program.

    Cited by:

    1. El Montasser, Ghassen, 2014. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 54920, University Library of Munich, Germany.
    2. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    3. Campbell, John & Perron, Pierre, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," Scholarly Articles 3374863, Harvard University Department of Economics.
    4. Partha Ray & Jorge Somnath Chatterjee, 2001. "The role of asset prices in Indian inflation in recent years: some conjectures," BIS Papers chapters, in: Bank for International Settlements (ed.), Modelling aspects of the inflation process and the monetary transmission mechanism in emerging market countries, volume 8, pages 131-150, Bank for International Settlements.
    5. McErlean, Seamus & Wu, Ziping & Moss, Joan E. & IJpelaar, Jos & Doherty, Andrew, 2003. "Do EU direct payments to beef producers belong in the ‘blue box’?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-19.
    6. Delatte, Anne-Laure & Fouguau, Julien & Holz, Carsten A., 2011. "Explaining money demand in China during the transition from a centrally planned to a market-based monetary system," BOFIT Discussion Papers 27/2011, Bank of Finland Institute for Emerging Economies (BOFIT).
    7. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    8. Perron, P. & Ghysels, E., 1994. "The Effect of Linear Filters on Dynamic Time series with Structural Change," Cahiers de recherche 9425, Universite de Montreal, Departement de sciences economiques.
    9. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2013. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working papers 2013-19, University of Connecticut, Department of Economics.
    10. Idrisov, Georgy (Идрисов, Георгий) & Ponomarev, Yury (Пономарев, Юрий) & Pleskachev, Yury Andreevich (Плескачев, Юрий Андреевич), 2016. "Analysis of Joint Exchange Rate Pass-Through and Import Duty Rates in the Russian Economy [Анализ Совместного Эффекта Переноса Обменного Курса И Ввозных Пошлин В Цены В Российской Экономике]," Working Papers 1666, Russian Presidential Academy of National Economy and Public Administration.
    11. Robert J. Shiller & Rafal M. Wojakowski & M. Shahid Ebrahim & Mark B. Shackleton, 2017. "Continuous Workout Mortgages: Efficient Pricing and Systemic Implications," Cowles Foundation Discussion Papers 2116, Cowles Foundation for Research in Economics, Yale University.
    12. Jeong, Deokjae, 2022. "How the reduction of Temporary Foreign Workers led to a rise in vacancy rates in the South Korea," MPRA Paper 118731, University Library of Munich, Germany.
    13. Attfield, C. L. F., 1997. "Estimating a cointegrating demand system," European Economic Review, Elsevier, vol. 41(1), pages 61-73, January.
    14. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    15. Norrbin, Stefan C. & Reffett, Kevin L., 1995. "Trade credit in a monetary economy," Journal of Monetary Economics, Elsevier, vol. 35(3), pages 413-430, June.
    16. Ricardo Gonçalves Silva & Marinho Gomes Andrade & Milton Barossi-Filho, 2004. "Understanding Brazilian Unemployment Structure: A Mixed Autoregressive Approach," Econometrics 0408003, University Library of Munich, Germany, revised 13 Aug 2004.
    17. Schlitzer, Giuseppe, 1995. "Testing the stationarity of economic time series: further Monte Carlo evidence," Ricerche Economiche, Elsevier, vol. 49(2), pages 125-144, June.
    18. Paqué, Karl-Heinz, 1991. "Structural wage rigidity in West Germany 1950-1989: Some new econometric evidence," Kiel Working Papers 489, Kiel Institute for the World Economy (IfW Kiel).
    19. Antonio Rubia, 2001. "Testing For Weekly Seasonal Unit Roots In Daily Electricity Demand: Evidence From Deregulated Markets," Working Papers. Serie EC 2001-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    20. Mª Ángeles Caraballo Pou & Carlos Dabús, 2005. "Nominal rigidities, relative prices and skewness," Economic Working Papers at Centro de Estudios Andaluces E2005/17, Centro de Estudios Andaluces.
    21. Attfield, Clifford L. F. & Silverstone, Brian, 1998. "Okun's Law, Cointegration and Gap Variables," Journal of Macroeconomics, Elsevier, vol. 20(3), pages 625-637, July.
    22. Afsin Sahin & Aysit Tansel & M. Hakan Berument, 2013. "Output-Employment Relationship across Sectors: A Long- versus Short-Run Perspective," Koç University-TUSIAD Economic Research Forum Working Papers 1311, Koc University-TUSIAD Economic Research Forum.
    23. José Roberto López, 1993. "Market efficiency, purchasing power parity and cointegration in Central American black foreing exchange markets," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 8(1), pages 111-153.
    24. Daniel, Betty C., 1997. "International interdependence of national growth rates: A structural trends anakysis," Journal of Monetary Economics, Elsevier, vol. 40(1), pages 73-96, September.
    25. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1997. "Seasonal Adjustment and Volatility Dynamics," CIRANO Working Papers 97s-39, CIRANO.
    26. Norrbin, Stefan C. & Reffett, Kevin L., 1996. "A substitution test of long-run money demand," Journal of Macroeconomics, Elsevier, vol. 18(2), pages 253-270.
    27. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    28. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap Procedures for Detecting Multiple Persistence Shifts in Heteroskedastic Time Series," Boston University - Department of Economics - Working Papers Series WP2020-009, Boston University - Department of Economics.
    29. Hotta, Luiz K. & Morettin, Pedro A. & Pereira, Pedro L. Valls, 1992. "The Effect of Overlapping Aggregation on Time Series Models: An Application to the Unemployment Rate in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 12(2), November.
    30. Choudhry, Taufiq, 1996. "Real stock prices and the long-run money demand function: evidence from Canada and the USA," Journal of International Money and Finance, Elsevier, vol. 15(1), pages 1-17, February.
    31. David Griffiths, 2004. "The big problem of forecasting small change," Applied Economics, Taylor & Francis Journals, vol. 36(19), pages 2195-2207.
    32. Neil R. Ericsson & David F. Hendry & Hong-Anh Tran, 1993. "Cointegration, seasonality, encompassing, and the demand for money in the United Kingdom," International Finance Discussion Papers 457, Board of Governors of the Federal Reserve System (U.S.).
    33. Maravall, Agustín, 1999. "Short-term and long-term trends, seasonal and the business cycle," DES - Working Papers. Statistics and Econometrics. WS 6291, Universidad Carlos III de Madrid. Departamento de Estadística.
    34. Montañés, Antonio & Olmos, Lorena, 2013. "Convergence in US house prices," MPRA Paper 48454, University Library of Munich, Germany.
    35. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    36. Caraballo Pou, M. Angeles & Dabus, Carlos, 2008. "Nominal rigidities, skewness and inflation regimes," Research in Economics, Elsevier, vol. 62(1), pages 16-33, March.
    37. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    38. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    39. El Montasser, Ghassen, 2012. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 45110, University Library of Munich, Germany, revised 04 Mar 2014.
    40. Matas Mir, Antonio & Osborn, Denise R, 2004. "Seasonal adjustment and the detection of business cycle phases," Working Paper Series 357, European Central Bank.
    41. Anton I. Votinov & Ivan P. Stankevich, 2017. "VAR Approach to Efficiency Evaluation of Fiscal Economy Encouragement Measures," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 64-74, December.
    42. Josef Arlt, 2023. "The problem of annual inflation rate indicator," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2772-2788, July.
    43. D R Osborn & M Sensier, 2004. "Modelling UK Inflation: Persistence, Seasonality and Monetary Policy," Centre for Growth and Business Cycle Research Discussion Paper Series 46, Economics, The University of Manchester.
    44. Diego Romero‐Ávila, 2007. "The Unit Root Hypothesis for Aggregate Output May Not Hold after All: New Evidence from a Panel Stationarity Test with Multiple Breaks," Southern Economic Journal, John Wiley & Sons, vol. 73(3), pages 642-658, January.
    45. Shigeyuki Hamori & Akira Tokihisa, 2001. "Seasonal cointegration and the money demand function: some evidence from Japan," Applied Economics Letters, Taylor & Francis Journals, vol. 8(5), pages 305-310.
    46. Ermini, Luigi & Chang, Dongkoo, 1996. "Testing the joint hypothesis of rationality and neutrality under seasonal cointegration: The case of Korea," Journal of Econometrics, Elsevier, vol. 74(2), pages 363-386, October.
    47. Ucar, Nuri & Guler, Huseyin, 2010. "Testing stochastic income convergence in seasonal heterogeneous panels," Economic Modelling, Elsevier, vol. 27(1), pages 422-431, January.
    48. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    49. Hamori, Shigeyuki, 2001. "Seasonality and stock returns: some evidence from Japan," Japan and the World Economy, Elsevier, vol. 13(4), pages 463-481, December.
    50. Alexander Vosseler & Enzo Weber, 2017. "Bayesian analysis of periodic unit roots in the presence of a break," Applied Economics, Taylor & Francis Journals, vol. 49(38), pages 3841-3862, August.
    51. Bohl, Martin T., 2000. "Nonstationary stochastic seasonality and the German M2 money demand function," European Economic Review, Elsevier, vol. 44(1), pages 61-70, January.
    52. Perron, Pierre, 1992. "Racines unitaires en macroéconomie : le cas d’une variable," L'Actualité Economique, Société Canadienne de Science Economique, vol. 68(1), pages 325-356, mars et j.
    53. Lee, Hahn Shik & Siklos, Pierre L., 1997. "The role of seasonality in economic time series reinterpreting money-output causality in U.S. data," International Journal of Forecasting, Elsevier, vol. 13(3), pages 381-391, September.
    54. del Barrio Castro, Tomas & Pons Fanals, Ernest & Surinach Caralt, Jordi, 2002. "The effects of working with seasonally adjusted data when testing for unit root," Economics Letters, Elsevier, vol. 75(2), pages 249-256, April.
    55. Crowder, William J., 1996. "The international convergence of inflation rates during fixed and floating exchange rate regimes," Journal of International Money and Finance, Elsevier, vol. 15(4), pages 551-575, August.
    56. Tomas del Barrio Castro & Mariam Camarero & Cecilio Tamarit, 2013. "An analysis of the trade balance for OECD countries using periodic integration and cointegration," Working Papers 1320, Department of Applied Economics II, Universidad de Valencia.
    57. Artur Da Silva Lopes, 2004. "Deterministic Seasonality In Dickey-Fuller Tests: Should We Care?," Royal Economic Society Annual Conference 2004 75, Royal Economic Society.
    58. Hassler Uwe & Demetrescu Matei, 2005. "Spurious Persistence and Unit Roots due to Seasonal Differencing: The Case of Inflation Rates / Künstliche Persistenz und Einheitswurzeln infolge saisonaler Differenzen: Das Beispiel Inflationsraten," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(4), pages 413-426, August.
    59. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    60. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5.
    61. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
    62. Denise Osborn & Marianne Sensier, 2007. "UK inflation: persistance, seasonality and monetary policy," Economics Discussion Paper Series 0716, Economics, The University of Manchester.
    63. Hecq, Alain, 1998. "Does seasonal adjustment induce common cycles?," Economics Letters, Elsevier, vol. 59(3), pages 289-297, June.
    64. Darne, Olivier, 2004. "Seasonal cointegration for monthly data," Economics Letters, Elsevier, vol. 82(3), pages 349-356, March.
    65. Gianluca Cubadda, 1999. "Common cycles in seasonal non‐stationary time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May.
    66. Eugenio Martínez & Raúl Mejía & Eliseo Pérez Stable, 2008. "Elasticity of cigarette demand in Argentina: An empirical analysis using vector error-correction model," Working Papers 1, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    67. Chinn, Menzie David, 1997. "Paper pushers or paper money? Empirical assessment of fiscal and monetary models of exchange rate determination," Journal of Policy Modeling, Elsevier, vol. 19(1), pages 51-78, February.
    68. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    69. Christis Hassapis, 2003. "Financial variables and real activity in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(2), pages 421-442, May.
    70. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1995. "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process?," CIRANO Working Papers 95s-19, CIRANO.
    71. Petr Kadeřábek, 2007. "Jednoduchý model interakce CPI a PPI: aplikace na měsíční data zemí EU [A Simple Model of Interaction Between CPI and PPI: Application to Monthly Data of EU Countries]," Politická ekonomie, Prague University of Economics and Business, vol. 2007(2), pages 226-244.
    72. Campos, Julia, 1991. "A Brief Look on the Literature on Deseasonalization," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 11(2), November.
    73. Donald S. Allen, 1997. "Filtering permanent cycles with complex unit roots," Working Papers 1997-001, Federal Reserve Bank of St. Louis.
    74. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    75. Delatte, Anne-Laure & Holz, Carsten, 2013. "Understanding Money Demand in the Transition from a Centrally Planned to a Market Economy," CEPR Discussion Papers 9721, C.E.P.R. Discussion Papers.
    76. Emanuela Marrocu, 2006. "An Investigation of the Effects of Data Transformation on Nonlinearity," Empirical Economics, Springer, vol. 31(4), pages 801-820, November.
    77. Nikolaos Giannellis & Minoas Koukouritakis, 2011. "Behavioural equilibrium exchange rate and total misalignment: evidence from the euro exchange rate," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 38(4), pages 555-578, November.
    78. Tomas del Barrio Castro & Denise R. Osborn, 2006. "A Random Walk through Seasonal Adjustment: Noninvertible Moving Averages and Unit Root Tests," Economics Discussion Paper Series 0612, Economics, The University of Manchester.
    79. Robert M. Kunst & Michael Reutter, 2000. "Decisions on Seasonal Unit Roots," CESifo Working Paper Series 286, CESifo.
    80. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    81. Albertson, Kevin & Aylen, Jonathan, 1999. "Forecasting using a periodic transfer function: with an application to the UK price of ferrous scrap," International Journal of Forecasting, Elsevier, vol. 15(4), pages 409-419, October.
    82. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    83. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    84. Lenz, Carlos, 2003. "A different look at the Census X-11 filter," Economics Letters, Elsevier, vol. 79(1), pages 1-6, April.

  76. David, J-F. & Ghysels, E., 1989. "Y A-T-Il Des Biais Systematiques Dans Les Annonces Budgetaires Canadiennes?," Cahiers de recherche 8912, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Jean Francois David & Eric Ghysels, 1989. "Y a-t-il des biais systematiques dans les annonces budgetaires canadiennes? (With English summary.)," Canadian Public Policy, University of Toronto Press, vol. 15(3), pages 313-321, September.

  77. Ghysels, E. & Karangwa, E., 1988. "Nominal Versus Real Seasonal Adjustment," Cahiers de recherche 8842, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    2. Jenny Wilkinson, 1992. "Explaining Australia's Imports: 1974–1989," The Economic Record, The Economic Society of Australia, vol. 68(2), pages 151-164, June.

  78. Ghysels, E & Hall, A., 1988. "A Test For Structural Stability Of Euler Conditions Parameters Estimated Via The Generalized Methods Of Moments Estimators," Cahiers de recherche 8837, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    3. Alastair R. Hall & Yuyi Li & Chris D. Orme & Arthur Sinko, 2013. "Testing for Structural Instability in Moment Restriction Models: an Info-metric Approach," Economics Discussion Paper Series 1326, Economics, The University of Manchester.
    4. D.M. Nachane & Nishita Raje, 2007. "Financial Liberalisation and Monetary Policy," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 1(1), pages 47-83, March.
    5. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    6. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    7. Luis F. Céspedes & Claudio Soto, 2007. "Credibility and Inflation Targeting in Chile," Central Banking, Analysis, and Economic Policies Book Series, in: Frederic S. Miskin & Klaus Schmidt-Hebbel & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Se (ed.),Monetary Policy under Inflation Targeting, edition 1, volume 11, chapter 14, pages 547-578, Central Bank of Chile.
    8. Stuart Hyde & Mohamed Sherif, 2005. "Don't break the habit: structural stability tests of consumption asset pricing models in the UK," Applied Economics Letters, Taylor & Francis Journals, vol. 12(5), pages 289-296.
    9. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    10. Pagan, A.R. & Schwert, G.W., 1989. "Alternative Models For Conditional Stock Volatility," Papers 89-02, Rochester, Business - General.
    11. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    12. Ghysels, Eric & Guay, Alain & Hall, Alastair, 1998. "Predictive tests for structural change with unknown breakpoint," Journal of Econometrics, Elsevier, vol. 82(2), pages 209-233, February.
    13. Pieter J. Van Der Sluis, 1998. "Computationally attractive stability tests for the efficient method of moments," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 203-227.
    14. Jan, Yin-Ching & Chou, Peter Shyan-Rong & Hung, Mao-Wei, 2000. "Pacific Basin stock markets and international capital asset pricing," Global Finance Journal, Elsevier, vol. 11(1-2), pages 1-16.
    15. Patrick Fève & François Langot, 1995. "La méthode des moments généralisés et ses extensions : théorie et applications en macro-économie," Économie et Prévision, Programme National Persée, vol. 119(3), pages 139-170.
    16. Joseph E. Gagnon, 1989. "A forward-looking multicountry model: MX3," International Finance Discussion Papers 359, Board of Governors of the Federal Reserve System (U.S.).
    17. Groenewold, Nicolaas & Fraser, Patricia, 2001. "Tests of asset-pricing models: how important is the iid-normal assumption?," Journal of Empirical Finance, Elsevier, vol. 8(4), pages 427-449, September.
    18. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
    19. Todd E. Clark & Michael W. McCracken, 2002. "Forecast-based model selection in the presence of structural breaks," Research Working Paper RWP 02-05, Federal Reserve Bank of Kansas City.
    20. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2012. "Inference regarding multiple structural changes in linear models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 281-302.
    21. Garcia, Rene & Ghysels, Eric, 1998. "Structural change and asset pricing in emerging markets," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 455-473, June.
    22. Eric Ghysels & Alain Guay, 1998. "Structural Change Tests for Simulated Method of Moments," CIRANO Working Papers 98s-19, CIRANO.
    23. Dungey, Mardi & Gajurel, Dinesh, 2013. "Equity Market Contagion during the Global Financial Crisis: Evidence from the World’s Eight Largest Economies," Working Papers 17213, University of Tasmania, Tasmanian School of Business and Economics, revised 16 Oct 2013.
    24. Campbell R. Harvey & Bruno Solnik & Guofu Zhou, 2002. "What Determines Expected International Asset Returns?," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 249-298, November.
    25. Luis F. Céspedes & Marcelo Ochoa & Claudio Soto, 2005. "The New Keynesian Phillips Curve in an Emerging Market Economy: The Case of Chile," Working Papers Central Bank of Chile 355, Central Bank of Chile.
    26. Don H. Kim & Marcel A. Priebsch, 2020. "Are Shadow Rate Models of the Treasury Yield Curve Structurally Stable?," Finance and Economics Discussion Series 2020-061, Board of Governors of the Federal Reserve System (U.S.).
    27. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
    28. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    29. Dufour, Jean-Marie & Ghysels, Eric, 1996. "Editors' introduction recent developments in the econometrics of structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 1-8, January.
    30. Michael W. McCracken, 2012. "Consistent testing for structural change at the ends of the sample," Working Papers 2012-029, Federal Reserve Bank of St. Louis.
    31. Wang, Zhi, 2000. "Production-based asset pricing: a cross-industry study," ISU General Staff Papers 2000010108000013294, Iowa State University, Department of Economics.
    32. Luis F. Céspedes C. & Claudio Soto G., 2006. "Inflation Targeting And Monetary Policy Credibility In Chile," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 9(3), pages 53-70, December.
    33. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    34. Sen, Amit & Hall, Alastair, 1999. "Two further aspects of some new tests for structural stability," Structural Change and Economic Dynamics, Elsevier, vol. 10(3-4), pages 431-443, December.
    35. Arturo Estrella & Jeffrey C. Fuhrer, 1999. "Are \"deep\" parameters stable? the Lucas critique as an empirical hypothesis," Working Papers 99-4, Federal Reserve Bank of Boston.
    36. Dinesh Gajurel & Mardi Dungey, 2023. "Systematic Contagion Effects of the Global Finance Crisis: Evidence from the World’s Largest Advanced and Emerging Equity Markets," JRFM, MDPI, vol. 16(3), pages 1-20, March.
    37. Stuart Hyde & Mohamed Sherif, 2004. "Don't break the habit: structural stability tests of consumption models in the UK," Money Macro and Finance (MMF) Research Group Conference 2003 49, Money Macro and Finance Research Group.
    38. Somayeh Mardaneh, 2012. "How Do Oil Shocks A¤ect the Structural Stability of Hybrid New Keynesian Phillips Curve?," Discussion Papers in Economics 12/20, Division of Economics, School of Business, University of Leicester.
    39. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
    40. Oliner, Stephen D. & Rudebusch, Glenn D. & Sichel, Daniel, 1996. "The Lucas critique revisited assessing the stability of empirical Euler equations for investment," Journal of Econometrics, Elsevier, vol. 70(1), pages 291-316, January.
    41. Kim Nummelin, 1994. "Risk aversion, multivariate proxies and the behavior of asset returns," Finnish Economic Papers, Finnish Economic Association, vol. 7(2), pages 94-107, Autumn.
    42. Anthony W. Lynch & Jessica A. Wachter, 2008. "Using Samples of Unequal Length in Generalized Method of Moments Estimation," NBER Working Papers 14411, National Bureau of Economic Research, Inc.
    43. Ghysels, Eric & Guay, Alain, 2004. "Testing For Structural Change In The Presence Of Auxiliary Models," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1168-1202, December.
    44. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2008. "Inference regarding multiple structural changes in linear models estimated via two stage least squares," MPRA Paper 9251, University Library of Munich, Germany, revised 20 Jun 2008.
    45. N. Groenewold & P. Fraser, 1998. "Tests of Asset-pricing Models: How important is the IID-normal assumptions?," Economics Discussion / Working Papers 98-20, The University of Western Australia, Department of Economics.
    46. Li, Hong, 2008. "Estimation and testing of Euler equation models with time-varying reduced-form coefficients," Journal of Econometrics, Elsevier, vol. 142(1), pages 425-448, January.
    47. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    48. SOOREEA, Rajeev, 2007. "Are Taylor-Based Monetary Policy Rules Forward-Looking?. An Investigation Using Superexogeneity Tests," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 7(2), pages 87-94.
    49. Arturo Estrella & Jeffrey C. Fuhrer, 2003. "Monetary Policy Shifts and the Stability of Monetary Policy Models," The Review of Economics and Statistics, MIT Press, vol. 85(1), pages 94-104, February.
    50. Mardi Dungey & Eric Renault, 2018. "Identifying contagion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 227-250, March.
    51. Clare, A. D. & Smith, P. N. & Thomas, S. H., 1997. "UK stock returns and robust tests of mean variance efficiency," Journal of Banking & Finance, Elsevier, vol. 21(5), pages 641-660, May.
    52. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    53. Sen, Amit, 1999. "Approximate p-values of predictive tests for structural stability," Economics Letters, Elsevier, vol. 63(3), pages 245-253, June.
    54. Hideaki Tamura & Yoichi Matsubayashi, 2014. "A New Solution to the Equity Premium Puzzle and the Risk-Free Rate Puzzle: Theory and Evidence," Discussion Papers 1422, Graduate School of Economics, Kobe University.
    55. Lund, Jesper & Engsted, Tom, 1996. "GMM and present value tests of the C-CAPM: evidence from the Danish, German, Swedish and UK stock markets," Journal of International Money and Finance, Elsevier, vol. 15(4), pages 497-521, August.

  79. Ghysels, E., 1987. "Cycles and Seasonais in Inventories: Another Look At Non-Stationarity and Induced Seasonality," Cahiers de recherche 8718, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Jeffrey A. Miron & Stephen P. Zeldes, "undated". "Seasonality, Cost Shocks and the Production Smoothing Model of Inventories," Rodney L. White Center for Financial Research Working Papers 01-87, Wharton School Rodney L. White Center for Financial Research.
    2. Ambler, Steve, 1989. "La stationnarité en économétrie et en macroéconomique : un guide pour les non initiés," L'Actualité Economique, Société Canadienne de Science Economique, vol. 65(4), pages 590-609, décembre.
    3. Hall, Alastair & Rossana, Robert J., 1987. "On Estimates of the Speed of Adjustment in Inventory Investment Equations," Department of Economics and Business - Archive 259426, North Carolina State University, Department of Economics.

  80. Ghysels, E., 1987. "The Political Economy of the Budget and Efficient Information Processing," Cahiers de recherche 8733, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Jean Francois David & Eric Ghysels, 1989. "Y a-t-il des biais systematiques dans les annonces budgetaires canadiennes? (With English summary.)," Canadian Public Policy, University of Toronto Press, vol. 15(3), pages 313-321, September.

  81. Ghysels, E. & Hall, A., 1987. "Testing Non-Nested Euler Conditions with Quadrature-Based Methods of Approximation," Cahiers de recherche 8703, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Marmer, Vadim & Otsu, Taisuke, 2008. "Optimal Comparison of Misspecified Moment Restriction Models under a Chosen Measure of Fit," Microeconomics.ca working papers vadim_marmer-2008-13, Vancouver School of Economics, revised 25 Jul 2011.
    2. Taisuke Otsu & Myung Hwan Seo & Yoon-Jae Whang, 2008. "Testing for Non-Nested Conditional Moment Restrictions Using Unconditional Empirical Likelihood," Cowles Foundation Discussion Papers 1660, Cowles Foundation for Research in Economics, Yale University.
    3. Taisuke Otsu & Yoon-Jae Whang, 2005. "Testing for Non-nested Conditional Moment Retrictions via Conditional Empirical Likelihood," Cowles Foundation Discussion Papers 1533, Cowles Foundation for Research in Economics, Yale University.
    4. Ramalho, Joaquim J. S. & Smith, Richard J., 2002. "Generalized empirical likelihood non-nested tests," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 99-125, March.

  82. Ghysels, E., 1987. "Unit Root Tests and the Statistical Pitfalls of Seasonal Adjustment: the Case of U.S. Post-War Real Gnp," Cahiers de recherche 8723, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.

  83. Ghysels, E. & Nerlove, M., 1986. "Seasonality in Surveys a Comparison of Belgian, French and German Business Tests," Cahiers de recherche 8614, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.

  84. Ghysels, E., 1986. "A Study Towards a Dynamic Theory of Seasonality for Economic Time Series," Cahiers de recherche 8612, Universite de Montreal, Departement de sciences economiques.

    Cited by:

    1. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    2. Braun, R Anton & Evans, Charles L, 1998. "Seasonal Solow Residuals and Christmas: A Case for Labor Hoarding and Increasing Returns," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(3), pages 306-330, August.
    3. Ghysels, E., 1992. "Charistmas, Spring and the Dawning of Economic Recovery," Cahiers de recherche 9215, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Jeffrey A. Miron & J. Joseph Beaulieu, 1995. "What Have Macroeconomists Learned about Business Cycles from the Study of Seasonal Cycles?," NBER Working Papers 5258, National Bureau of Economic Research, Inc.
    5. J. Joseph Beaulieu & Jeffrey A. Miron, 1991. "A Cross Country Comparison of Seasonal Cycles and Business Cycles," Papers 0011, Boston University - Industry Studies Programme.
    6. Abdur Chowdhury, 1995. "The demand for money in a small open economy: The case of Switzerland," Open Economies Review, Springer, vol. 6(2), pages 131-144, April.
    7. Travis D. Nesmith, 2007. "Rational Seasonality," International Symposia in Economic Theory and Econometrics, in: Functional Structure Inference, pages 227-255, Emerald Group Publishing Limited.
    8. Lawrence J. Christiano & Richard M. Todd, 2000. "The Conventional Treatment of Seasonality in Business Cycle Analysis: Does it Create Distortions?," NBER Technical Working Papers 0266, National Bureau of Economic Research, Inc.
    9. Jeffrey A. Miron, 1990. "The Economics of Seasonal Cycles," NBER Working Papers 3522, National Bureau of Economic Research, Inc.
    10. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.
    11. Richard M. Todd, 1989. "Periodic linear-quadratic methods for modeling seasonality," Staff Report 127, Federal Reserve Bank of Minneapolis.

Articles

  1. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.

    Cited by:

    1. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
    2. Hiroyuki Kawakatsu, 2019. "Jointly Modeling Autoregressive Conditional Mean and Variance of Non-Negative Valued Time Series," Econometrics, MDPI, vol. 7(4), pages 1-19, December.
    3. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    5. BAUWENS, Luc & HAUTSCH, Nikolaus, 2009. "Modelling financial high frequency data using point processes," LIDAM Reprints CORE 2123, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2006. "Nonparametric Density Estimation for Positive Time Series," Cahiers de recherche 06-09, HEC Montréal, Institut d'économie appliquée.
    7. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, New Economic School (NES).
    8. Brendan P.M. McCabe & Gael Martin & Keith Freeland, 2010. "A Quasi-locally Most powerful Test for Correlation in the conditional Variance of Positive Data," Monash Econometrics and Business Statistics Working Papers 2/10, Monash University, Department of Econometrics and Business Statistics.
    9. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    10. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    11. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    12. Anthony Tay & Christopher Ting & Yiu Kuen Tse & Mitch Warachka, 2007. "Modeling Transaction Data of Trade Direction and Estimation of Probability of Informed Trading," Finance Working Papers 22483, East Asian Bureau of Economic Research.
    13. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    14. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    15. Marcelo Fernandes & Joachim Grammig, 2000. "Non-Parametric Specification Tests For Conditional Duration Models," Computing in Economics and Finance 2000 40, Society for Computational Economics.
    16. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    17. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    18. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    19. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2016. "Solvency capital requirement for a temporal dependent losses in insurance," Economic Modelling, Elsevier, vol. 58(C), pages 588-598.
    20. Drost, F.C. & Werker, B.J.M., 2001. "Semiparametric Duration Models," Other publications TiSEM 845b71c6-9525-4006-a0df-4, Tilburg University, School of Economics and Management.
    21. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
    22. COSMA, Antonio & GALLI, Fausto, 2006. "A nonparametric ACD model," LIDAM Discussion Papers CORE 2006067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Fernandes, Marcelo & Grammig, Joachim, 2002. "A family of autoregressive conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 440, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    24. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    25. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    26. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    27. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    28. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    29. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    30. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
    31. Bodnar, Taras & Hautsch, Nikolaus, 2013. "Copula-based dynamic conditional correlation multiplicative error processes," CFS Working Paper Series 2013/19, Center for Financial Studies (CFS).
    32. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    33. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    34. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
    35. Dungey, Mardi & Jeyasreedharan, Nagaratnam & Li, Tuo, 2010. "Modelling the Time Between Trades in the After-Hours Electronic Equity Futures Market," Working Papers 10451, University of Tasmania, Tasmanian School of Business and Economics, revised 30 May 2012.
    36. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    37. Gao, Jiti & Kim, Nam Hyun & Saart, Patrick W., 2015. "A misspecification test for multiplicative error models of non-negative time series processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 346-359.
    38. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    39. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    40. Luintel, Kul B & Xu, Yongdeng, 2013. "Testing weak exogeneity in multiplicative error models," Cardiff Economics Working Papers E2013/6, Cardiff University, Cardiff Business School, Economics Section.
    41. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    42. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    43. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    44. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
    45. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    46. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    47. BAUWENS, Luc & GIOT, Pierre, 1998. "Asymmetric ACD models: introducing price information in ACD models with a two state transition model," LIDAM Discussion Papers CORE 1998044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    48. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
    49. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    50. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    51. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    52. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    53. BAUWENS, Luc & GALLi, Fausto & GIOT, Pierre, 2009. "The moments of Log-ACD models," LIDAM Reprints CORE 2023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    54. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    55. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," CAEPR Working Papers 2007-019, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    56. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    57. Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
    58. Grammig, Joachim & Wellner, Marc, 1999. "Modeling the interdependence of volatility and inter-transaction duration processes," SFB 373 Discussion Papers 1999,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    59. Patrick Gagliardini & Christian Gourieroux, 2002. "Duration Time Series Models with Proportional Hazard," Working Papers 2002-21, Center for Research in Economics and Statistics.
    60. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.

  2. Ghysels, Eric & Cherkaoui, Mouna, 2003. "Emerging markets and trading costs: lessons from Casablanca," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 169-198, February.

    Cited by:

    1. Bekaert, Geert & Harvey, Campbell R., 2003. "Emerging markets finance," Journal of Empirical Finance, Elsevier, vol. 10(1-2), pages 3-56, February.
    2. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
    3. Amira Akl Ahmed, 2014. "Evolving and relative efficiency of MENA stock markets: evidence from rolling joint variance ratio tests," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 91-126, May.
    4. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
    5. Assaf, Ata, 2015. "Value-at-Risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions," Journal of Multinational Financial Management, Elsevier, vol. 29(C), pages 30-45.
    6. Diego Alonso Agudelo Rueda & Milena Castano, 2010. "Friend or Foe? Foreign investors and the liquidity of six Asian markets," Documentos de Trabajo de Valor Público 10653, Universidad EAFIT.
    7. Hearn, Bruce, 2014. "The impact of institutions, ownership structure, business angels, venture capital and lead managers on IPO firm underpricing across North Africa," Journal of Multinational Financial Management, Elsevier, vol. 24(C), pages 19-42.
    8. Jahan-Parvar, Mohammad R. & Mohammadi, Hassan, 2013. "Risk and return in the Tehran stock exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 238-256.
    9. A. Assaf, 2007. "Fractional integration in the equity markets of MENA region," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 709-723.
    10. Harvey, Campbell & Bekaert, Geert & Lundblad, Christian T, 2006. "Liquidity and Expected Returns: Lessons from Emerging Markets," CEPR Discussion Papers 5946, C.E.P.R. Discussion Papers.
    11. Jahan-Parvar, Mohammad R. & Waters, George A., 2010. "Equity price bubbles in the Middle Eastern and North African Financial markets," Emerging Markets Review, Elsevier, vol. 11(1), pages 39-48, March.
    12. Hearn, Bruce, 2013. "The determinants of director remuneration, executive tenure and individual executive disclosure in North African IPO firms," Research in International Business and Finance, Elsevier, vol. 27(1), pages 162-182.
    13. Monia Antar Limem & Faouzi Jilani, 2013. "Large trades on the Tunisian Stock Exchange: Downstairs versus upstairs stock markets," Journal of Asset Management, Palgrave Macmillan, vol. 14(6), pages 410-422, December.
    14. Hearn, Bruce, 2014. "The political institutional and firm governance determinants of liquidity: Evidence from North Africa and the Arab Spring," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 127-158.
    15. Cheng, Ai-Ru & Jahan-Parvar, Mohammad R. & Rothman, Philip, 2010. "An empirical investigation of stock market behavior in the Middle East and North Africa," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 413-427, June.
    16. Hearn, Bruce & Piesse, Jenifer, 2013. "Firm level governance and institutional determinants of liquidity: Evidence from Sub Saharan Africa," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 93-111.

  3. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    See citations under working paper version above.
  4. Ghysels, Eric & Hall, Alastair, 2002. "Interview with Christopher A. Sims," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 448-449, October.

    Cited by:

    1. Giuseppe Ragusa, 2007. "Bayesian Likelihoods for Moment Condition Models," Working Papers 060714, University of California-Irvine, Department of Economics.
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.

  5. Ghysels, Eric & Hall, Alastair, 2002. "Interview with Lars Peter Hansen," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 442-447, October.

    Cited by:

    1. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    2. Lars Peter Hansen, 2014. "Nobel Lecture: Uncertainty Outside and Inside Economic Models," Journal of Political Economy, University of Chicago Press, vol. 122(5), pages 945-987.
    3. Stanislav Anatolyev, 2005. "Optimal Instruments in Time Series: A Survey," Working Papers w0069, Center for Economic and Financial Research (CEFIR).
    4. Wang, Xuexin, 2016. "A New Class of Tests for Overidentifying Restrictions in Moment Condition Models," MPRA Paper 69004, University Library of Munich, Germany.
    5. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    6. Carrillo, Julio A. & Fève, Patrick, 2004. "Some Perils of Policy Rule Regression," IDEI Working Papers 301, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.

  6. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    See citations under working paper version above.
  7. Andreou, Elena & Ghysels, Eric, 2002. "Rolling-Sample Volatility Estimators: Some New Theoretical, Simulation, and Empirical Results," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 363-376, July. See citations under working paper version above.
  8. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    See citations under working paper version above.
  9. Ghysels, Eric, 2000. "Some Econometric Recipes for High-Frequency Data Cooking," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 154-163, April.

    Cited by:

    1. Veredas, David & Rodríguez Poo, Juan M., 2001. "On the (intradaily) seasonality and dynamics of a financial point process: a semiparametric approach," DES - Working Papers. Statistics and Econometrics. WS ws013321, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    3. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2011. "Long Memory and Fractional Integration in High-Frequency British Pound / Dollar Spot Exchange Rates," Faculty Working Papers 02/11, School of Economics and Business Administration, University of Navarra.
    4. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    5. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    6. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    7. Laura Graf & Wiebke S. Wendler & Jutta Stumpf-Wollersheim & Isabell M. Welpe, 2019. "Wanting More, Getting Less: Gaming Performance Measurement as a Form of Deviant Workplace Behavior," Journal of Business Ethics, Springer, vol. 157(3), pages 753-773, July.
    8. Meinl Thomas & Sun Edward W., 2012. "A Nonlinear Filtering Algorithm based on Wavelet Transforms for High-Frequency Financial Data Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-24, September.
    9. McCulloch Robert E. & Tsay Ruey S., 2001. "Nonlinearity in High-Frequency Financial Data and Hierarchical Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-18, April.
    10. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    11. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    12. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.

  10. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.

    Cited by:

    1. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 1999. "Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting Than You Think," Center for Financial Institutions Working Papers 00-28, Wharton School Center for Financial Institutions, University of Pennsylvania.
    2. Tim Bollerslev & Michael Gibson & Hao Zhou, 2007. "Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities," CREATES Research Papers 2007-16, Department of Economics and Business Economics, Aarhus University.
    3. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    4. Valentina Corradi & Antonio Mele & Walter Distaso, 2008. "Macroeconomic Determinants of Stock Market Returns, Volatility and Volatility Risk-Premia," FMG Discussion Papers dp616, Financial Markets Group.
    5. Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
    6. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    9. Santa-Clara, Pedro & Saretto, Alessio, 2004. "Option Strategies: Good Deals and Margin Calls," University of California at Los Angeles, Anderson Graduate School of Management qt0499w44p, Anderson Graduate School of Management, UCLA.
    10. René Garcia & Richard Luger & Eric Renault, 2001. "Asymmetric Smiles, Leverage Effects and Structural Parameters," CIRANO Working Papers 2001s-01, CIRANO.
    11. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    13. Francisco Peñaranda & Jón Daníelsson, 2007. "On the impact of fundamentals, liquidity and coordination on market stability," Economics Working Papers 1003, Department of Economics and Business, Universitat Pompeu Fabra, revised Mar 2010.
    14. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    15. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    16. Ambrocio, Gene & Colak, Gonul & Hasan, Iftekhar, 2022. "Commitment or constraint? The effect of loan covenants on merger and acquisition activity," Finance Research Letters, Elsevier, vol. 47(PB).
    17. Zhylyevskyy, Oleksandr, 2009. "A Fast Fourier Transform Technique for Pricing American Options Under Stochastic Volatility," Staff General Research Papers Archive 13112, Iowa State University, Department of Economics.
    18. Martin, G.M. & Forbes, C.S. & Martin, V.L., 2000. "Implicit Bayesian Inference Using Option Prices," Monash Econometrics and Business Statistics Working Papers 5/00, Monash University, Department of Econometrics and Business Statistics.
    19. Kocagil, Ahmet E. & Swanson, Norman R. & Zeng, Tian, 2001. "A new definition for time-dependent price mean reversion in commodity markets," Economics Letters, Elsevier, vol. 71(1), pages 9-16, April.
    20. Qian Han, 2013. "A Linear Relationship between Market Prices of Risks and Risk Aversion in Complete Stochastic Volatility Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    21. Altissimo, Filippo & Mele, Antonio, 2005. "Simulated nonparametric estimation of dynamic models with applications to finance," LSE Research Online Documents on Economics 24658, London School of Economics and Political Science, LSE Library.
    22. Indranil Sengupta, 2016. "Generalized Bn–S Stochastic Volatility Model For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-23, March.
    23. Paola Zerilli, 2007. "Option Pricing and Spikes in Volatility: Theoretical and Empirical Analysis," Discussion Papers 07/08, Department of Economics, University of York.
    24. GARCIA,René & LUGER, Richard & RENAULT, Éric, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent variables," Cahiers de recherche 2001-10, Universite de Montreal, Departement de sciences economiques.
    25. Yingying Li & Per A. Mykland, 2007. "Are volatility estimators robust with respect to modeling assumptions?," Papers 0709.0440, arXiv.org.
    26. G.C. Lim & G.M. Martin & V.L. Martin, 2002. "Parametric Pricing of Higher Order Moments in S&P500 Options," Monash Econometrics and Business Statistics Working Papers 1/02, Monash University, Department of Econometrics and Business Statistics.
    27. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    28. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function Based Linear State Space Representation," Tinbergen Institute Discussion Papers 22-000/III, Tinbergen Institute.
    29. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    30. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    31. Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de Estadística.
    32. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    33. A. S. Hurn & K. A. Lindsay & A. J. McClelland, 2015. "Estimating the Parameters of Stochastic Volatility Models Using Option Price Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 579-594, October.
    34. Qian Han & Calum G. Turvey, 2013. "A Robust Equilibrium Relationship between Market Prices of Risks and Risk Aversion in Dynamically Complete Stochastic," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    35. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    36. Brennan, Michael J & LIU, XIAOQUAN & Xia, Yihong, 2005. "Option Pricing Kernels and the ICAPM," University of California at Los Angeles, Anderson Graduate School of Management qt4d90p8ss, Anderson Graduate School of Management, UCLA.
    37. Amine Ouazad, 2022. "Do Investors Hedge Against Green Swans? Option-Implied Risk Aversion to Wildfires," Papers 2208.06930, arXiv.org.
    38. Steven Heston & Kris Jacobs & Hyung Joo Kim, 2023. "The Pricing Kernel in Options," Finance and Economics Discussion Series 2023-053, Board of Governors of the Federal Reserve System (U.S.).
    39. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    40. Hui Guo & Jason Higbee & Christopher J. Neely, 2006. "Foreign exchange volatility is priced in equities," Working Papers 2004-029, Federal Reserve Bank of St. Louis.
    41. Feunou Bruno & Fontaine Jean-Sébastien & Jin Jianjian, 2021. "What model for the target rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-23, February.
    42. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    43. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars, 2010. "Option pricing with asymmetric heteroskedastic normal mixture models," LIDAM Discussion Papers CORE 2010049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    44. Olivier Scaillet., 2003. "Linear-Quadratic Jump-Diffusion Modelling with Application to Stochastic Volatility," THEMA Working Papers 2003-29, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    45. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    46. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    47. Zhylyevskyy, Oleksandr, 2012. "Joint Characteristic Function of Stock Log-Price and Squared Volatility in the Bates Model and Its Asset Pricing Applications," Staff General Research Papers Archive 35559, Iowa State University, Department of Economics.
    48. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2011. "Can standard preferences explain the prices of out-of-the-money S&P 500 put options?," Working Paper Series WP-2011-11, Federal Reserve Bank of Chicago.
    49. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2001. "An Empirical Investigation of Continuous-Time Equity Return Models," NBER Working Papers 8510, National Bureau of Economic Research, Inc.
    50. Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
    51. Charles Cao & Jing-Zhi Huang, 2007. "Determinants of S&P 500 index option returns," Review of Derivatives Research, Springer, vol. 10(1), pages 1-38, January.
    52. Caio Ibsen R. Almeida & José Valentim M. Vicente, 2007. "Identifying Volatility Risk Premium from Fixed Income Asian Options," Working Papers Series 136, Central Bank of Brazil, Research Department.
    53. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    54. Bondarenko, Oleg, 2014. "Variance trading and market price of variance risk," Journal of Econometrics, Elsevier, vol. 180(1), pages 81-97.
    55. Santa-Clara, Pedro & Yan, Shu, 2004. "Jump and Volatility Risk and Risk Premia: A New Model and Lessons from S&P 500 Options," University of California at Los Angeles, Anderson Graduate School of Management qt5dv8v999, Anderson Graduate School of Management, UCLA.
    56. Eva Ferreira & Mónica Gago & Angel León & Gonzalo Rubio, 2005. "An empirical comparison of the performance of alternative option pricing models," Investigaciones Economicas, Fundación SEPI, vol. 29(3), pages 483-523, September.
    57. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    58. Fornari, Fabio, 2010. "Assessing the compensation for volatility risk implicit in interest rate derivatives," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 722-743, September.
    59. J.L. Prigent & O. Renault & O. Scaillet., 1999. "Option pricing with discrete rebalancing," THEMA Working Papers 99-41, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    60. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    61. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    62. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    63. Gallant, A. Ronald & Tauchen, George, 2002. "Simulated Score Methods and Indirect Inference for Continuous-time Models," Working Papers 02-09, Duke University, Department of Economics.
    64. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    65. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    66. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    67. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    68. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    69. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
    70. Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
    71. Jeremy Graveline & Irina Zviadadze & Mikhail Chernov, 2012. "Crash Risk in Currency Returns," 2012 Meeting Papers 753, Society for Economic Dynamics.
    72. Neil Shephard & Torben G. Andersen, 2008. "Stochastic Volatility: Origins and Overview," OFRC Working Papers Series 2008fe23, Oxford Financial Research Centre.
    73. Wenjun Zhang & Jin E. Zhang, 2020. "GARCH Option Pricing Models and the Variance Risk Premium," JRFM, MDPI, vol. 13(3), pages 1-21, March.
    74. Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
    75. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, Center for Economic and Financial Research (CEFIR).
    76. Fabio Fornari & Antonio Mele, 2001. "Recovering the Probability Density Function of Asset Prices Using GARCH as Diffusion Approximations," Temi di discussione (Economic working papers) 396, Bank of Italy, Economic Research and International Relations Area.
    77. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    78. Peter Christoffersen & Kris Dorion & Yintian Wang, 2008. "Volatility Components, Affine Restrictions and Non-Normal Innovations," CREATES Research Papers 2008-10, Department of Economics and Business Economics, Aarhus University.
    79. Mr. Jorge A Chan-Lau & Mr. Armando Méndez Morales, 2003. "Testing the Informational Efficiency of OTC Optionson Emerging Market Currencies," IMF Working Papers 2003/001, International Monetary Fund.
    80. Uppal, Raman & DeMiguel, Victor & Plyakha, Yuliya & Vilkov, Grigory, 2010. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," CEPR Discussion Papers 7686, C.E.P.R. Discussion Papers.
    81. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    82. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    83. A. Mele, 2000. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," THEMA Working Papers 2000-39, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    84. Xinyu WU & Hailin ZHOU, 2016. "GARCH DIFFUSION MODEL, iVIX, AND VOLATILITY RISK PREMIUM," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 327-342.
    85. Liu, Jun & Pan, Jun, 2003. "Dynamic Derivative Strategies," Working papers 4334-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    86. Antonio Mele & Filippo Altissimo, 2004. "Simulated Nonparametric Estimation of Continuous Time Models of Asset Prices and Returns," FMG Discussion Papers dp476, Financial Markets Group.
    87. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    88. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    89. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2010. "Explaining asset pricing puzzles associated with the 1987 market crash," Working Paper Series WP-2010-10, Federal Reserve Bank of Chicago.
    90. Peter Van Tassel, 2017. "Global Variance Term Premia and Intermediary Risk Appetite," 2017 Meeting Papers 149, Society for Economic Dynamics.
    91. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai & Yintian Wang, 2008. "Option Valuation with Long-run and Short-run Volatility Components," CREATES Research Papers 2008-11, Department of Economics and Business Economics, Aarhus University.
    92. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
    93. Patrick Cheridito & Damir Filipovic, 2004. "Market Price of Risk Specifications for Affine Models: Theory and Evidence," Econometric Society 2004 North American Winter Meetings 536, Econometric Society.
    94. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    95. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2017. "Quadratic approximation of slow factor of volatility in a Multi-factor Stochastic volatility Model," Papers 1703.10825, arXiv.org.
    96. Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
    97. Almeida, Caio & Graveline, Jeremy J. & Joslin, Scott, 2011. "Do interest rate options contain information about excess returns?," Journal of Econometrics, Elsevier, vol. 164(1), pages 35-44, September.
    98. Cheng, Ai-ru (Meg) & Gallant, A. Ronald & Ji, Chuanshu & Lee, Beom S., 2008. "A Gaussian approximation scheme for computation of option prices in stochastic volatility models," Journal of Econometrics, Elsevier, vol. 146(1), pages 44-58, September.
    99. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    100. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    101. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    102. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2018. "Quadratic approximation of the slow factor of volatility in a multifactor stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 607-624, May.
    103. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    104. Guenter Franke & James Huang & Richard Stapleton, 2006. "Two-dimensional risk-neutral valuation relationships for the pricing of options," Review of Derivatives Research, Springer, vol. 9(3), pages 213-237, November.
    105. Christoffersen, Peter F. & Diebold, Francis X., 2003. "Financial asset returns, direction-of-change forecasting, and volatility dynamics," CFS Working Paper Series 2004/08, Center for Financial Studies (CFS).
    106. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    107. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    108. Juho Kanniainen & Robert Pich'e, 2012. "Stock Price Dynamics and Option Valuations under Volatility Feedback Effect," Papers 1209.4718, arXiv.org.
    109. Claude Martini & Iacopo Raffaelli, 2021. "Revisiting the Implied Remaining Variance framework of Carr and Sun (2014): Locally consistent dynamics and sandwiched martingales," Papers 2105.06390, arXiv.org.
    110. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    111. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    112. Eirini Konstantinidi & George Skiadopoulos, 2014. "How Does the Market Variance Risk Premium Vary over Time? Evidence from S&P 500 Variance Swap Investment Returns," Working Papers 732, Queen Mary University of London, School of Economics and Finance.
    113. George J. Jiang, 2002. "Testing Option Pricing Models with Stochastic Volatility, Random Jumps and Stochastic Interest Rates," International Review of Finance, International Review of Finance Ltd., vol. 3(3‐4), pages 233-272, September.
    114. Elena Andreou & Eric Ghysels, 2007. "Quality Control for Structural Credit Risk Models," University of Cyprus Working Papers in Economics 3-2007, University of Cyprus Department of Economics.
    115. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    116. Chernov, Mikhail, 2003. "Empirical reverse engineering of the pricing kernel," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 329-364.
    117. Norman R. Swanson & Lili Cai, 2011. "In- and Out-of-Sample Specification Analysis of Spot Rate Models: Further Evidence for the Period 1982-2008," Departmental Working Papers 201102, Rutgers University, Department of Economics.
    118. Zhi Dong & Tien Foo Sing, 2021. "Do Investors Overreact for Property and Financial Service Sectors?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(1), pages 79-123, April.
    119. James Doran & Ehud Ronn, 2005. "The bias in Black-Scholes/Black implied volatility: An analysis of equity and energy markets," Review of Derivatives Research, Springer, vol. 8(3), pages 177-198, December.
    120. Carlo Marinelli & Stefano d'Addona, 2015. "Nonparametric estimates of pricing functionals," Papers 1506.06568, arXiv.org, revised Sep 2017.
    121. Doran, James S. & Ronn, Ehud I., 2008. "Computing the market price of volatility risk in the energy commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2541-2552, December.
    122. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    123. G.C. Lim & G.M. Martin & V.L. Martin, 2002. "Pricing Currency Options in Tranquil Markets: Modelling Volatility Frowns," Monash Econometrics and Business Statistics Working Papers 4/02, Monash University, Department of Econometrics and Business Statistics.
    124. McGee, Richard J. & McGroarty, Frank, 2017. "The risk premium that never was: A fair value explanation of the volatility spread," European Journal of Operational Research, Elsevier, vol. 262(1), pages 370-380.
    125. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
    126. Per Mykland, 2012. "A Gaussian calculus for inference from high frequency data," Annals of Finance, Springer, vol. 8(2), pages 235-258, May.
    127. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    128. Jarno Talponen, 2018. "Matching distributions: Recovery of implied physical densities from option prices," Papers 1803.03996, arXiv.org.
    129. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    130. Joshua Aurand & Yu‐Jui Huang, 2023. "Epstein‐Zin utility maximization on a random horizon," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1370-1411, October.
    131. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    132. Hain, Martin & Uhrig-Homburg, Marliese & Unger, Nils, 2018. "Risk factors and their associated risk premia: An empirical analysis of the crude oil market," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 44-63.
    133. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    134. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    135. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    136. Mr. John J Matovu, 2007. "Volatility and Jump Risk Premia in Emerging Market Bonds," IMF Working Papers 2007/172, International Monetary Fund.
    137. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    138. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    139. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    140. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    141. Carol Alexander & Andreas Kaeck, 2012. "Does model fit matter for hedging? Evidence from FTSE 100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
    142. Wolff, Christian & Bams, Dennis & Lehnert, Thorsten, 2005. "Loss Functions in Option Valuation: A Framework for Model Selection," CEPR Discussion Papers 4960, C.E.P.R. Discussion Papers.
    143. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    144. Sergio Pastorello & Valentin Patilea & Eric Renault, 2003. "Iterative and Recursive Estimation in Structural Non-Adaptive Models," CIRANO Working Papers 2003s-08, CIRANO.
    145. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    146. Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.
    147. Marc Atlan & Hélyette Geman & Dilip Madan & Marc Yor, 2007. "Correlation and the pricing of risks," Annals of Finance, Springer, vol. 3(4), pages 411-453, October.
    148. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    149. Bingxin Li, 2020. "Option-implied filtering: evidence from the GARCH option pricing model," Review of Quantitative Finance and Accounting, Springer, vol. 54(3), pages 1037-1057, April.
    150. Zhiyuan Pan & Yudong Wang & Li Liu & Qing Wang, 2019. "Improving volatility prediction and option valuation using VIX information: A volatility spillover GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 744-776, June.
    151. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    152. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    153. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    154. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    155. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    156. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    157. C.S. Forbes & G.M. Martin & J. Wright, 2002. "Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices," Monash Econometrics and Business Statistics Working Papers 2/02, Monash University, Department of Econometrics and Business Statistics.
    158. Eraker, Bjørn & Wu, Yue, 2017. "Explaining the negative returns to volatility claims: An equilibrium approach," Journal of Financial Economics, Elsevier, vol. 125(1), pages 72-98.
    159. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    160. Veiga, Helena, 2006. "A two factor long memory stochastic volatility model," DES - Working Papers. Statistics and Econometrics. WS ws061303, Universidad Carlos III de Madrid. Departamento de Estadística.
    161. Christian Menn & Svetlozar Rachev, 2009. "Smoothly truncated stable distributions, GARCH-models, and option pricing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 411-438, July.
    162. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    163. Zhiyuan Pan & Yudong Wang & Li Liu, 2021. "Realized bipower variation, jump components, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1933-1958, December.
    164. Kadir G. Babaoglou & Peter Christoffersen & Steven L. Heston & Kris Jacobs, 2014. "Option Valuation with Volatility Components, Fat Tails, and Nonlinear Pricing Kernels," CREATES Research Papers 2015-55, Department of Economics and Business Economics, Aarhus University.
    165. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Likelihood-Related Estimation Methods and Non-Gaussian GARCH Processes," Post-Print halshs-00523371, HAL.
    166. Fang Liang & Lingshan Du, 2024. "Option pricing with dynamic conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1154-1188, July.
    167. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    168. Fornari, Fabio, 2008. "Assessing the compensation for volatility risk implicit in interest rate derivatives," Working Paper Series 859, European Central Bank.
    169. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    170. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    171. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
    172. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    173. Bekaert, Geert & Hoerova, Marie, 2016. "What do asset prices have to say about risk appetite and uncertainty?," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 103-118.
    174. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    175. Joshua Aurand & Yu-Jui Huang, 2019. "Epstein-Zin Utility Maximization on a Random Horizon," Papers 1903.08782, arXiv.org, revised May 2023.
    176. Bekaert, Geert & Engstrom, Eric, 2010. "Asset Return Dynamics Under Bad Environment-Good Environment Fundamentals," CEPR Discussion Papers 8150, C.E.P.R. Discussion Papers.
    177. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    178. Monica Gentile & Roberto Renò, 2002. "Which Model for the Italian Interest Rates?," LEM Papers Series 2002/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    179. Hsuan‐Ling Chang & Yen‐Cheng Chang & Hung‐Wen Cheng & Po‐Hsiang Peng & Kevin Tseng, 2019. "Jump variance risk: Evidence from option valuation and stock returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 890-915, July.
    180. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    181. Oleksandr Zhylyevskyy, 2005. "Pricing American-style Derivatives under the Heston Model Dynamics: A Fast Fourier Transformation in the Geske–Johnson Scheme," Computing in Economics and Finance 2005 187, Society for Computational Economics.
    182. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    183. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2007. "Models for S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, and Option Prices," CREATES Research Papers 2007-37, Department of Economics and Business Economics, Aarhus University.
    184. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    185. Stephen J. Taylor & Chi‐Feng Tzeng & Martin Widdicks, 2018. "Information about price and volatility jumps inferred from options prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1206-1226, October.
    186. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    187. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    188. Bruno Feunou & Cédric Okou, 2018. "Risk‐neutral moment‐based estimation of affine option pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 1007-1025, November.
    189. Panzica, Roberto Calogero, 2018. "Idiosyncratic volatility puzzle: The role of assets' interconnections," SAFE Working Paper Series 228, Leibniz Institute for Financial Research SAFE.
    190. Rytchkov, Oleg, 2016. "Time-Varying Margin Requirements and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 655-683, April.
    191. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    192. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    193. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    194. Bas Peeters, 2012. "Risk premiums in a simple market model for implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 13(5), pages 739-748, January.
    195. Kiesel, Rüdiger & Rahe, Florentin, 2017. "Option pricing under time-varying risk-aversion with applications to risk forecasting," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 120-138.
    196. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    197. Garcia, René & Lewis, Marc-André & Pastorello, Sergio & Renault, Éric, 2011. "Estimation of objective and risk-neutral distributions based on moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 22-32, January.
    198. Neumann, Maximilian & Prokopczuk, Marcel & Wese Simen, Chardin, 2016. "Jump and variance risk premia in the S&P 500," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 72-83.
    199. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    200. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    201. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2012. "Sources of Risk in Currency Returns," CEPR Discussion Papers 8745, C.E.P.R. Discussion Papers.
    202. Xinyu WU & Senchun REN & Hailin ZHOU, 2017. "Empirical Pricing Kernels: Evidence from the Hong Kong Stock Market," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 263-278.
    203. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    204. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    205. Li, Gang & Zhang, Chu, 2013. "Diagnosing affine models of options pricing: Evidence from VIX," Journal of Financial Economics, Elsevier, vol. 107(1), pages 199-219.
    206. David R. Ba~nos & Salvador Ortiz-Latorre & Oriol Zamora Font, 2022. "Change of measure in a Heston-Hawkes stochastic volatility model," Papers 2210.15343, arXiv.org.
    207. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps," Departmental Working Papers 201117, Rutgers University, Department of Economics.
    208. Wu Xin-Yu & Zhou Hai-Lin, 2015. "A triple-threshold leverage stochastic volatility model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 483-500, September.
    209. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 2001. "Testing and Comparing Value-at-Risk Measures," CIRANO Working Papers 2001s-03, CIRANO.
    210. Tauchen, George, 2001. "Notes on financial econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 57-64, January.
    211. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.
    212. Aït-Sahalia, Yacine & Karaman, Mustafa & Mancini, Loriano, 2020. "The term structure of equity and variance risk premia," Journal of Econometrics, Elsevier, vol. 219(2), pages 204-230.
    213. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    214. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    215. Gurdip Bakshi & Charles Cao & Zhaodong (Ken) Zhong, 2021. "Assessing models of individual equity option prices," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 1-28, July.
    216. Yun, Jaeho, 2011. "The role of time-varying jump risk premia in pricing stock index options," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 833-846.
    217. Franke, Günter & Huang, James & Stapleton, Richard C., 2007. "Two-dimensional risk neutral valuation relationships for the pricing of options," CoFE Discussion Papers 07/08, University of Konstanz, Center of Finance and Econometrics (CoFE).

  11. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    See citations under working paper version above.
  12. Eric Ghysels & Robert E. McCulloch & Ruey S. Tsay, 1998. "Bayesian inference for periodic regime-switching models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 129-143.
    See citations under working paper version above.
  13. Eric Ghysels & Serena Ng, 1998. "A Semiparametric Factor Model Of Interest Rates And Tests Of The Affine Term Structure," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 535-548, November. See citations under working paper version above.
  14. Ghysels, Eric & Guay, Alain & Hall, Alastair, 1998. "Predictive tests for structural change with unknown breakpoint," Journal of Econometrics, Elsevier, vol. 82(2), pages 209-233, February.
    See citations under working paper version above.
  15. Garcia, Rene & Ghysels, Eric, 1998. "Structural change and asset pricing in emerging markets," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 455-473, June.
    See citations under working paper version above.
  16. Bryan Campbell & Eric Ghysels, 1997. "An Empirical Analysis of the Canadian Budget Process," Canadian Journal of Economics, Canadian Economics Association, vol. 30(3), pages 553-576, August.
    See citations under working paper version above.
  17. Ghysels, Eric, 1997. "On seasonality and business cycle durations: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 79(2), pages 269-290, August.

    Cited by:

    1. Raimundo Soto, 2000. "Ajuste Estacional e Integración en Variables Macroeconómicas," Working Papers Central Bank of Chile 73, Central Bank of Chile.
    2. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.

  18. Ghysels, Eric, 1997. "Seasonal Adjustment and Other Data Transformations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 410-418, October.
    See citations under working paper version above.
  19. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 374-386, July.
    See citations under working paper version above.
  20. Ghysels, Eric & Granger, Clive W J & Siklos, Pierre L, 1996. "Is Seasonal Adjustment a Linear or Nonlinear Data-Filtering Process? Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 396-397, July.

    Cited by:

    1. Cubadda, Gianluca & Omtzigt, Pieter, 2003. "Small Sample Improvements in the Statistical Analysis of Seasonally Cointegrated Systems," Economics & Statistics Discussion Papers esdp03012, University of Molise, Department of Economics.
    2. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    3. Ching-Chih Chang & Chin-Yuan Hsieh & Yung-Chih Lin, 2012. "A predictive model of the freight rate of the international market in Capesize dry bulk carriers," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 313-317, March.
    4. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    5. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    6. Philip Kostov & John Lingard, 2005. "Seasonally specific model analysis of UK cereals prices," Econometrics 0507014, University Library of Munich, Germany.
    7. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    8. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    9. Supachoke Thawornkaiwong, 2016. "Simplified Spectral Analysis and Linear Filters for Analysis of Economic Time Series," PIER Discussion Papers 25, Puey Ungphakorn Institute for Economic Research.
    10. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    11. Rossen, Anja, 2014. "On the predictive content of nonlinear transformations of lagged autoregression residuals and time series observations," HWWI Research Papers 157, Hamburg Institute of International Economics (HWWI).
    12. Eric Ghysels & Clive W.J. Granger & Pierre L. Siklos, 1997. "Seasonal Adjustment and Volatility Dynamics," CIRANO Working Papers 97s-39, CIRANO.
    13. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    14. Rabindra Nepal and John Foster, 2016. "Testing for Market Integration in the Australian National Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    16. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    17. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    18. Franses, Philip Hans & de Bruin, Paul, 2002. "On data transformations and evidence of nonlinearity," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 621-632, September.
    19. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    20. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    21. Ching-Chih Chang & Tin-Chia Lai, 2011. "The nonlinear dynamic process of macroeconomic development by modelling dry bulk shipping market," Applied Economics Letters, Taylor & Francis Journals, vol. 18(17), pages 1655-1663.
    22. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    23. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    24. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
    25. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    26. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    27. Tarlok Singh, 2012. "Testing nonlinearities in economic growth in the OECD countries: an evidence from SETAR and STAR models," Applied Economics, Taylor & Francis Journals, vol. 44(30), pages 3887-3908, October.
    28. Gianluca Cubadda, 1999. "Common cycles in seasonal non‐stationary time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May.
    29. Gianluca Cubadda, 2001. "Common Features In Time Series With Both Deterministic And Stochastic Seasonality," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 201-216.
    30. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.
    31. Lacroix, R., 2008. "Analyse conjoncturelle de données brutes et estimation de cycles Partie 2 : mise en oeuvre empirique," Working papers 210, Banque de France.
    32. Zacharias Psaradakis & Martin Sola, 2003. "On detrending and cyclical asymmetry," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 271-289.
    33. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    34. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.

  21. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    See citations under working paper version above.
  22. Ghysels, Eric & Perron, Pierre, 1996. "The effect of linear filters on dynamic time series with structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 69-97, January.
    See citations under working paper version above.
  23. Dufour, Jean-Marie & Ghysels, Eric, 1996. "Editors' introduction recent developments in the econometrics of structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 1-8, January.

    Cited by:

    1. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    2. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    3. Bai, Jushan, 1999. "Likelihood ratio tests for multiple structural changes," Journal of Econometrics, Elsevier, vol. 91(2), pages 299-323, August.
    4. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    5. Shailesh Rastogi & Chaitaly Athaley, 2019. "Volatility Integration in Spot, Futures and Options Markets: A Regulatory Perspective," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    6. Ravindra H Dholakia & Amey A Sapre, 2011. "Estimating Structural Breaks Endogenously in India's Post-Independence Growth Path: An Empirical Critique," Journal of Quantitative Economics, The Indian Econometric Society, vol. 9(2), pages 73-87, July.
    7. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.

  24. Campbell, Bryan & Ghysels, Eric, 1995. "Federal Budget Projections: A Nonparametric Assessment of Bias and Efficiency," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 17-31, February.

    Cited by:

    1. Leal, Teresa & Pérez, Javier J. & Tujula, Mika & Vidal, Jean-Pierre, 2007. "Fiscal forecasting: lessons from the literature and challenges," Working Paper Series 843, European Central Bank.
    2. Cronin, David & McQuinn, Kieran, 2020. "Are official forecasts of output growth in the EU still biased? Evidence from stability and convergence programmes and the European Commission’s Spring forecasts," Papers WP681, Economic and Social Research Institute (ESRI).
    3. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    4. Auerbach, Alan J., 1999. "On the Performance and Use of Government Revenue Forecasts," National Tax Journal, National Tax Association;National Tax Journal, vol. 52(4), pages 765-782, December.
    5. George A. Krause, 2006. "Beyond the Norm," Rationality and Society, , vol. 18(2), pages 157-191, May.
    6. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, 1997. "Evaluating Density Forecasts," Center for Financial Institutions Working Papers 97-37, Wharton School Center for Financial Institutions, University of Pennsylvania.
    7. Björn Kauder & Niklas Potrafke & Christoph Schinke, 2017. "Manipulating Fiscal Forecasts: Evidence from the German States," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 73(2), pages 213-236, June.
    8. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    9. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    10. Timmermann, Allan & Elliott, Graham & Komunjer, Ivana, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    11. Timmermann, Allan & Elliott, Graham, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
    12. Robert Krol, 2014. "Forecast Bias of Government Agencies," Cato Journal, Cato Journal, Cato Institute, vol. 34(1), pages 99-112, Winter.
    13. Cronin, David & McQuinn, Kieran, 2021. "Are official forecasts of output growth in the EU still biased?," Journal of Policy Modeling, Elsevier, vol. 43(2), pages 337-349.
    14. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    15. Vasconcelos de Deus, Joseph David Barroso & de Mendonça, Helder Ferreira, 2017. "Fiscal forecasting performance in an emerging economy: An empirical assessment of Brazil," Economic Systems, Elsevier, vol. 41(3), pages 408-419.
    16. Dean Croushore & Simon van Norden, 2016. "Fiscal Forecasts at the FOMC: Evidence from the Greenbooks," CIRANO Working Papers 2016s-17, CIRANO.
    17. Zidong An & Joao Tovar Jalles, 2020. "On the performance of US fiscal forecasts: government vs. private information," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 48(2), pages 367-391, June.
    18. Dean Croushore & Simon van Norden, 2017. "Fiscal Surprises At The Fomc," Working Papers 17-13, Federal Reserve Bank of Philadelphia.
    19. Kitchen, John, 2003. "Observed Relationships Between Economic And Technical Receipts Revisions In Federal Budget Projections," MPRA Paper 22004, University Library of Munich, Germany.
    20. Cronin, David & McQuinn, Kieran, 2023. "Government debt forecast errors and the net expenditure rule in EU countries: Undue optimism at a cost," Journal of Policy Modeling, Elsevier, vol. 45(6), pages 1113-1131.
    21. Heinisch Katja & Scheufele Rolf, 2019. "Should Forecasters Use Real-Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, De Gruyter, vol. 20(4), pages 170-200, December.
    22. Sergey V. Chernenko, 2004. "The information content of forward and futures prices: market expectations and the price of risk," International Finance Discussion Papers 808, Board of Governors of the Federal Reserve System (U.S.).
    23. Cronin, David & McGowan, Kieran, 2023. "Government debt forecast errors and the net expenditure rule in EU countries," Papers WP756, Economic and Social Research Institute (ESRI).
    24. Bryan Campbell & Eric Ghysels, 1995. "An Empirical Analysis of the Canadian Budget Process," CIRANO Working Papers 95s-08, CIRANO.
    25. Lena Dräger & Jan-Oliver Menz & Ulrich Fritsche, 2011. "Perceived Inflation under Loss Aversion," Macroeconomics and Finance Series 201105, University of Hamburg, Department of Socioeconomics.
    26. de Mendonça, Helder Ferreira & Baca, Adriana Cabrera, 2022. "Fiscal opacity and reduction of income inequality through taxation: Effects on economic growth," The Quarterly Review of Economics and Finance, Elsevier, vol. 83(C), pages 69-82.
    27. Capistrán Carlos, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
    28. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
    29. Arai, Natsuki & Iizuka, Nobuo & Yamamoto, Yohei, 2022. "The Efficiency of the Government’s Revenue Projections," Discussion paper series HIAS-E-122, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    30. Dean Croushore & Simon van Norden, 2014. "Fiscal policy: ex ante and ex post," Working Papers 14-22, Federal Reserve Bank of Philadelphia.
    31. Katharina Glass, 2018. "Predictability of Euro Area Revisions," Macroeconomics and Finance Series 201801, University of Hamburg, Department of Socioeconomics.
    32. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
    33. Peter, Eckley, 2015. "(Non)rationality of consumer inflation perceptions," MPRA Paper 77082, University Library of Munich, Germany.
    34. Elkin Castaño Vélez & Luis Fernando Melo Velandia, 2000. "Metodos de combinacion de pronosticos: una aplicacion a la inflacion," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 52, pages 113-165, Enero Jun.
    35. Alexander, Marcus & Christakis, Nicholas A., 2008. "Bias and asymmetric loss in expert forecasts: A study of physician prognostic behavior with respect to patient survival," Journal of Health Economics, Elsevier, vol. 27(4), pages 1095-1108, July.

  25. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    See citations under working paper version above.
  26. Dufour, Jean-Marie & Ghysels, Eric & Hall, Alastair, 1994. "Generalized Predictive Tests and Structural Change Analysis in Econometrics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(1), pages 199-229, February.
    See citations under working paper version above.
  27. Canova, Fabio & Ghysels, Eric, 1994. "Changes in seasonal patterns : Are they cyclical?," Journal of Economic Dynamics and Control, Elsevier, vol. 18(6), pages 1143-1171, November.
    See citations under working paper version above.
  28. Ghysels, Eric & Jasiak, Joanna, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 399-401, October.

    Cited by:

    1. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: An Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Abanto-Valle, Carlos A. & Rodríguez, Gabriel & Garrafa-Aragón, Hernán B., 2021. "Stochastic Volatility in Mean: Empirical evidence from Latin-American stock markets using Hamiltonian Monte Carlo and Riemann Manifold HMC methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 272-286.
    3. Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

  29. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.

    Cited by:

    1. Del Barrio Castro, T & Rodrigues, PMM & Taylor, AMR, 2015. "Semi-Parametric Seasonal Unit Root Tests," Essex Finance Centre Working Papers 16807, University of Essex, Essex Business School.
    2. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    3. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    4. Olivier Darné & Claude Diebolt, 2002. "A Note on Seasonal Unit Root Tests," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(3), pages 305-310, August.
    5. Otero, Jesus & Smith, Jeremy & Giulietti, Monica, 2007. "Testing for seasonal unit roots in heterogeneous panels in the presence of cross section dependence," Economics Letters, Elsevier, vol. 97(2), pages 179-184, November.
    6. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    8. Julio C. Alonso & Andrés M. Arcila & Sebastián Montenegro, 2015. "¿Estabiliza el FEPA los precios locales del azúcar?," Estudios Gerenciales, Universidad Icesi, issue 04, June.
    9. Norman Swanson & Richard Urbach, 2013. "Prediction and Simulation Using Simple Models Characterized by Nonstationarity and Seasonality," Departmental Working Papers 201323, Rutgers University, Department of Economics.
    10. Mårten Löf & Johan Lyhagen, 2003. "On seasonal error correction when the processes include different numbers of unit roots," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 377-389.
    11. R. Anton Braun & Charles L. Evans, 1994. "Seasonality and equilibrium business cycle theories," Staff Report 168, Federal Reserve Bank of Minneapolis.
    12. S. Krane & W. Wascher, 1999. "The cyclical sensitivity of seasonality in US employment," BIS Working Papers 67, Bank for International Settlements.
    13. McErlean, Seamus & Wu, Ziping & Moss, Joan E. & IJpelaar, Jos & Doherty, Andrew, 2003. "Do EU direct payments to beef producers belong in the ‘blue box’?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-19.
    14. Castro, Tomás del Barrio & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2013. "The Impact Of Persistent Cycles On Zero Frequency Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1289-1313, December.
    15. Alonso Cifuentes, Julio César & Arcila Vásquez, Andrés Mauricio & Montenegro Arana, Sebastián, 2016. "Herramientas de estabilización de los precios internos del azúcar en Colombia: ¿Funcionan?," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 105-126, December.
    16. Alkhathlan, Khalid & Gately, Dermot & Javid, Muhammad, 2014. "Analysis of Saudi Arabia's behavior within OPEC and the world oil market," Energy Policy, Elsevier, vol. 64(C), pages 209-225.
    17. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    18. Paulo M.M. Rodrigues & A.M. Robert Taylor, 2006. "Efficient Tests of the Seasonal Unit Root Hypothesis," Discussion Papers 06/12, University of Nottingham, School of Economics.
    19. Josep LluIs Carrion-I-Silvestre & Tomas Del Barrio & Enrique Lopez-Bazo, 2004. "Evidence on the purchasing power parity in a panel of cities," Applied Economics, Taylor & Francis Journals, vol. 36(9), pages 961-966.
    20. Herwartz, Helmut, 1997. "Performance of periodic error correction models in forecasting consumption data," International Journal of Forecasting, Elsevier, vol. 13(3), pages 421-431, September.
    21. Shin, Dong Wan & Oh, Man-Suk, 2004. "Fully modified semiparametric GLS estimation for regressions with nonstationary seasonal regressors," Journal of Econometrics, Elsevier, vol. 122(2), pages 247-280, October.
    22. Burridge, Peter & Taylor, A. M. Robert, 2001. "On regression-based tests for seasonal unit roots in the presence of periodic heteroscedasticity," Journal of Econometrics, Elsevier, vol. 104(1), pages 91-117, August.
    23. Kalyvitis, Sarantis C., 1997. "Evaluating the real effects of devaluation expectations in Greece under alternative policies," Economic Modelling, Elsevier, vol. 14(2), pages 215-236, April.
    24. Hassler, Uwe & Rodrigues, Paulo M. M., 2002. "Seasonal Unit Root Tests under Structural Breaks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 37696, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Frank Reinhardt & David Giles, 2001. "Are cigarette bans really good economic policy?," Applied Economics, Taylor & Francis Journals, vol. 33(11), pages 1365-1368.
    26. Perron, P. & Ghysels, E., 1994. "The Effect of Linear Filters on Dynamic Time series with Structural Change," Cahiers de recherche 9425, Universite de Montreal, Departement de sciences economiques.
    27. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
    28. Julio César Alonso Cifuentes & Andrés Mauricio Arcila Vásquez & Sebastián Montenegro Arana, 2017. "Internal price stabilization tools in the Colombian sugar market: Do they work?," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 105-126, Enero - J.
    29. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    30. Rodrigues, P.M.M. & Franses, Ph.H.B.F., 2003. "A sequential approach to testing seasonal unit roots in high frequency data," Econometric Institute Research Papers EI 2003-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    31. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    32. Richard Smith & Robert Taylor, "undated". "Additional Critical Values and Asymptotic Representations for Seasonal Unit Root Tests," Discussion Papers 95/43, Department of Economics, University of York.
    33. A. M. Robert Taylor, 2003. "Locally Optimal Tests Against Unit Roots in Seasonal Time Series Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(5), pages 591-612, September.
    34. Shin, Dong Wan & Oh, Man-Suk, 2000. "Semiparametric tests for seasonal unit roots based on a semiparametric feasible GLSE," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 207-218, November.
    35. Smith, Jeremy & Otero, Jesus, 1997. "Structural breaks and seasonal integration," Economics Letters, Elsevier, vol. 56(1), pages 13-19, September.
    36. Lee, Hahn S. & Siklos, Pierre L., 1995. "A note on the critical values for the maximum likelihood (seasonal) cointegration tests," Economics Letters, Elsevier, vol. 49(2), pages 137-145, August.
    37. Antonio Rubia, 2001. "Testing For Weekly Seasonal Unit Roots In Daily Electricity Demand: Evidence From Deregulated Markets," Working Papers. Serie EC 2001-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    38. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    39. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    40. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    41. Hans Franses, Philip & Koehler, Anne B., 1998. "A model selection strategy for time series with increasing seasonal variation," International Journal of Forecasting, Elsevier, vol. 14(3), pages 405-414, September.
    42. Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    43. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    44. Skrobotov Anton & Cavaliere Giuseppe & Taylor Robert, 2016. "Wild Bootstrap Seasonal Unit Root Tests for Time Series with Periodic Non-Stationary Volatility," Working Papers wpaper-2016-269, Gaidar Institute for Economic Policy, revised 2016.
    45. Otero, Jesus & Smith, Jeremy & Giulietti, Monica, 2004. "Testing for seasonal unit roots in heterogeneous panels," Economic Research Papers 269589, University of Warwick - Department of Economics.
    46. Huang, Tai-Hsin & Shen, Chung-Hua, 2002. "Seasonal cointegration and cross-equation restrictions on a forward-looking buffer stock model of money demand," Journal of Econometrics, Elsevier, vol. 111(1), pages 11-46, November.
    47. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    48. Gil-Alana, L A & Robinson, Peter M., 2000. "Testing of seasonal fractional integration in UK and Japanese consumption and income," LSE Research Online Documents on Economics 2051, London School of Economics and Political Science, LSE Library.
    49. del Barrio Castro, Tomas, 2006. "On the performance of the DHF tests against nonstationary alternatives," Statistics & Probability Letters, Elsevier, vol. 76(3), pages 291-297, February.
    50. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    51. da Silva Lopes, Artur C. B., 2001. "The robustness of tests for seasonal differencing to structural breaks," Economics Letters, Elsevier, vol. 71(2), pages 173-179, May.
    52. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
    53. Francesco Bravo, 2010. "Nonparametric likelihood inference for general autoregressive models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(1), pages 79-106, March.
    54. Smith, Richard J. & Robert Taylor, A. M., 2001. "Recursive and rolling regression-based tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 105(2), pages 309-336, December.
    55. Carl Bonham & Byron Gangnes, 1995. "Intervention Analysis with Cointegrated Time Series: The Case of the Hawaii Hotel Room Tax," Working Papers 199505, University of Hawaii at Manoa, Department of Economics.
    56. Nadezhda Ivanova, 2007. "Estimation of the Equilibrium Real Exchange Rate in Russia: Trade-Balance Approach," Working Papers w0102, New Economic School (NES).
    57. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    58. Ucar, Nuri & Guler, Huseyin, 2010. "Testing stochastic income convergence in seasonal heterogeneous panels," Economic Modelling, Elsevier, vol. 27(1), pages 422-431, January.
    59. Yoshinori Kawasaki & Philip Hans Franses, 2003. "Detecting seasonal unit roots in a structural time series model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(4), pages 373-387.
    60. Atle Oglend & Frank Asche, 2016. "Cyclical non-stationarity in commodity prices," Empirical Economics, Springer, vol. 51(4), pages 1465-1479, December.
    61. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    62. C. Wernerheim & M. Waples, 2013. "Demand patterns and Canada’s trade in services," International Economics and Economic Policy, Springer, vol. 10(2), pages 159-181, June.
    63. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    64. Hamori, Shigeyuki, 2001. "Seasonality and stock returns: some evidence from Japan," Japan and the World Economy, Elsevier, vol. 13(4), pages 463-481, December.
    65. Duffy, Martyn, 2003. "Advertising and food, drink and tobacco consumption in the United Kingdom: a dynamic demand system," Agricultural Economics, Blackwell, vol. 28(1), pages 51-70, January.
    66. Bohl, Martin T., 2000. "Nonstationary stochastic seasonality and the German M2 money demand function," European Economic Review, Elsevier, vol. 44(1), pages 61-70, January.
    67. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    68. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    69. Lee, Hahn Shik & Siklos, Pierre L., 1997. "The role of seasonality in economic time series reinterpreting money-output causality in U.S. data," International Journal of Forecasting, Elsevier, vol. 13(3), pages 381-391, September.
    70. William R. Bell & Eric Ghysels & Hahn Shik Lee, 1997. "Seasonal Time Series and Autocorrelation Function Estimation," CIRANO Working Papers 97s-35, CIRANO.
    71. Sandra G. Feltham & David E.A. Giles, 1999. "Testing for Unit Roots in Semi-Annual Data," Econometrics Working Papers 9912, Department of Economics, University of Victoria.
    72. Rotger, Gabriel Pons, "undated". "Testing for Seasonal Unit Roots with Temporally Aggregated Time Series," Economics Working Papers 2003-16, Department of Economics and Business Economics, Aarhus University.
    73. Kaili Shen & David E. Giles, 2005. "Rational Exuberance at the Mall: Addiction to Carrying a Credit Card Balance," Econometrics Working Papers 0508, Department of Economics, University of Victoria.
    74. Crowder, William J., 1996. "The international convergence of inflation rates during fixed and floating exchange rate regimes," Journal of International Money and Finance, Elsevier, vol. 15(4), pages 551-575, August.
    75. Artur Da Silva Lopes, 2004. "Deterministic Seasonality In Dickey-Fuller Tests: Should We Care?," Royal Economic Society Annual Conference 2004 75, Royal Economic Society.
    76. Hernán Rincón, 1999. "Testing the Short-Long-Run Exchange Rate Effects on Trade Balance: The Case of Colombia," Borradores de Economia 120, Banco de la Republica de Colombia.
    77. Luis A. Gil-Alana & Juncal Cunado & Fernando Perez de Gracia, 2008. "Tourism in the Canary Islands: forecasting using several seasonal time series models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 621-636.
    78. Stephen Leybourne & A. M. Robert Taylor, 2003. "Seasonal Unit Root Tests Based on Forward and Reverse Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 441-460, July.
    79. Robert Taylor, 2005. "On the limiting behaviour of augmented seasonal unit root tests," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    80. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    81. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    82. Huang, Tai-Hsin & Shen, Chung-Hua, 1999. "Applying the seasonal error correction model to the demand for international reserves in Taiwan," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 107-131, January.
    83. Caceres-Hernandez, Jose & Martin-Rodriguez, Gloria, 2015. "Splines and seasonal unit roots in weekly agricultural prices," 2015 Conference, August 9-14, 2015, Milan, Italy 211380, International Association of Agricultural Economists.
    84. B. da Silva Lopes, Artur C., 2005. "Finite sample effects of pure seasonal mean shifts on Dickey-Fuller tests," MPRA Paper 125, University Library of Munich, Germany, revised May 2006.
    85. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
    86. Domenico Depalo, 2009. "A seasonal unit-root test with Stata," Stata Journal, StataCorp LP, vol. 9(3), pages 422-438, September.
    87. Gil-Alana, L.A., 2008. "Testing of seasonal integration and cointegration with fractionally integrated techniques: An application to the Danish labour demand," Economic Modelling, Elsevier, vol. 25(2), pages 326-339, March.
    88. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    89. Shipra Banik & Param Silvapulle, 1999. "Testing for Seasonal Stability in Unemployment Series: International Evidence," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 26(2), pages 123-139, June.
    90. Duffy, Martyn, 2003. "On the estimation of an advertising-augmented, cointegrating demand system," Economic Modelling, Elsevier, vol. 20(1), pages 181-206, January.
    91. Taylor, A. M. Robert, 1997. "On the practical problems of computing seasonal unit root tests," International Journal of Forecasting, Elsevier, vol. 13(3), pages 307-318, September.
    92. Rodrigues, Paulo M. M., 2000. "A note on the application of the DF test to seasonal data," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 171-175, April.
    93. Shigeyuki Hamori & Akira Tokihisa, 2002. "Some International Evidence on the Seasonality of Stock Prices," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(1), pages 79-86, April.

  30. Ghysels, Eric, 1993. "Editor's introduction : Seasonality and econometric models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 1-8.

    Cited by:

    1. Stefania D'Amico & Don H. Kim & Min Wei, 2014. "Tips from TIPS: the informational content of Treasury Inflation-Protected Security prices," Finance and Economics Discussion Series 2014-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Catalin Angelo IOAN & Gina IOAN, 2013. "The Open Society, Institutions and Economic Performance," EuroEconomica, Danubius University of Galati, issue 2(32), pages 175-180, September.
    3. Javed I. Ahmed, 2014. "Competition in Lending and Credit Ratings," Working Papers 14-01, Office of Financial Research, US Department of the Treasury.

  31. Ghysels, Eric & Lee, Hahn S & Siklos, Pierre L, 1993. "On the (Mis)Specification of Seasonality and Its Consequences: An Empirical Investigation with U.S. Data," Empirical Economics, Springer, vol. 18(4), pages 747-760.
    See citations under working paper version above.
  32. Ghysels, Eric & Perron, Pierre, 1993. "The effect of seasonal adjustment filters on tests for a unit root," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 57-98.
    See citations under working paper version above.
  33. Ghysels, Eric & Hall, Alastair, 1990. "Testing nonnested Euler conditions with quadrature-based methods of approximation," Journal of Econometrics, Elsevier, vol. 46(3), pages 273-308, December.
    See citations under working paper version above.
  34. Ghysels, Eric, 1990. "Unit-Root Tests and the Statistical Pitfalls of Seasonal Adjustment: The Case of U.S. Postwar Real Gross National Product," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 145-152, April.

    Cited by:

    1. David Rae, 1997. "A forward-looking model of aggregate consumption in New Zealand," New Zealand Economic Papers, Taylor & Francis Journals, vol. 31(2), pages 199-220.
    2. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2013. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working papers 2013-19, University of Connecticut, Department of Economics.
    3. Holmes, Mark J. & Otero, Jesús, 2023. "Psychological price barriers, El Niño, La Niña: New insights for the case of coffee," Journal of Commodity Markets, Elsevier, vol. 31(C).
    4. Lastrapes, William D. & Selgin, George, 1995. "The liquidity effect: Identifying short-run interest rate dynamics using long-run restrictions," Journal of Macroeconomics, Elsevier, vol. 17(3), pages 387-404.
    5. Schlitzer, Giuseppe, 1995. "Testing the stationarity of economic time series: further Monte Carlo evidence," Ricerche Economiche, Elsevier, vol. 49(2), pages 125-144, June.
    6. Raimundo Soto M. & Matías Tapia G., 2000. "Seasonal Cointegration in Money Demand," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 3(3), pages 57-71, December.
    7. Francisco Nadal de Simone & Jose Tongzon, 1997. "Is there a business cycle in Singapore? Is there a Singaporean business cycle?," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 25(1), pages 60-79, March.
    8. Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
    9. Mª Ángeles Caraballo Pou & Carlos Dabús, 2005. "Nominal rigidities, relative prices and skewness," Economic Working Papers at Centro de Estudios Andaluces E2005/17, Centro de Estudios Andaluces.
    10. Muhd-Zulkhibri & A. Majid, 2005. "Modelling the Stability of Money Demand in Small Open Economy: The Case of Malaysia," The IUP Journal of Applied Economics, IUP Publications, vol. 0(2), pages 7-23, March.
    11. Apostolos Serletis, 1994. "Maximum likelihood cointegration tests of purchasing power parity: Evidence from seventeen OECD countries," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 130(3), pages 476-493, September.
    12. Ignacio Mauleón & Mª Mar Sánchez, 2000. "Fundamentals Of The Us And The Uk Interest Rates Under The Rational Expectation Scheme," Working Papers. Serie AD 2000-20, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    13. Choudhry, Taufiq, 1996. "Real stock prices and the long-run money demand function: evidence from Canada and the USA," Journal of International Money and Finance, Elsevier, vol. 15(1), pages 1-17, February.
    14. Wells, J. M., 1997. "Modelling seasonal patterns and long-run trends in U.S. time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 407-420, September.
    15. Caraballo Pou, M. Angeles & Dabus, Carlos, 2008. "Nominal rigidities, skewness and inflation regimes," Research in Economics, Elsevier, vol. 62(1), pages 16-33, March.
    16. Ghysels, Éric, 1994. "L’analyse économétrique et la saisonnalité," L'Actualité Economique, Société Canadienne de Science Economique, vol. 70(1), pages 43-62, mars.
    17. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
    18. Younes Zouhar & Abderrahman Kacemi, 2008. "Financial Liberalization and Money Demand in Morocco," Working Papers 389, Economic Research Forum, revised 01 Jan 2008.
    19. Josef Arlt, 2023. "The problem of annual inflation rate indicator," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2772-2788, July.
    20. Jan J.J. Groen, 1998. "The Monetary Exchange Rate Model as a Long-Run Phenomenon," Tinbergen Institute Discussion Papers 98-082/2, Tinbergen Institute.
    21. Tomas del Barrio Castro & Mariam Camarero & Cecilio Tamarit, 2013. "The trade balance in euro countries: a natural case study of periodic integration with a changing mean," Working Papers 1321, Department of Applied Economics II, Universidad de Valencia.
    22. Alexander Vosseler & Enzo Weber, 2017. "Bayesian analysis of periodic unit roots in the presence of a break," Applied Economics, Taylor & Francis Journals, vol. 49(38), pages 3841-3862, August.
    23. Sriram, Subramanian S., 2002. "Determinants and stability of demand for M2 in Malaysia," Journal of Asian Economics, Elsevier, vol. 13(3), pages 337-356.
    24. Tomas del Barrio Castro & Mariam Camarero & Cecilio Tamarit, 2013. "An analysis of the trade balance for OECD countries using periodic integration and cointegration," Working Papers 1320, Department of Applied Economics II, Universidad de Valencia.
    25. Artur Da Silva Lopes, 2004. "Deterministic Seasonality In Dickey-Fuller Tests: Should We Care?," Royal Economic Society Annual Conference 2004 75, Royal Economic Society.
    26. Hassler Uwe & Demetrescu Matei, 2005. "Spurious Persistence and Unit Roots due to Seasonal Differencing: The Case of Inflation Rates / Künstliche Persistenz und Einheitswurzeln infolge saisonaler Differenzen: Das Beispiel Inflationsraten," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(4), pages 413-426, August.
    27. Méndez Parra, Maximiliano, 2015. "Futures prices, trade and domestic supply of agricultural commodities," Economics PhD Theses 0115, Department of Economics, University of Sussex Business School.
    28. Tomás Barrio & Mariam Camarero & Cecilio Tamarit, 2019. "Testing for Periodic Integration with a Changing Mean," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 45-75, June.
    29. Oleg Obrezkov, 2007. "Long range dependence and the purchasing power parity (in Russian)," Quantile, Quantile, issue 2, pages 131-140, March.
    30. Jesus Otero & Jeremy Smith, 2002. "Seasonal adjustment and cointegration," Borradores de Investigación 3483, Universidad del Rosario.
    31. Brendan O'Donovan & David Rae, 1997. "The determinants of house prices in New Zealand: An aggregate and regional analysis," New Zealand Economic Papers, Taylor & Francis Journals, vol. 31(2), pages 175-198.
    32. Alain Hecq & Sean Telg & Lenard Lieb, 2017. "Do Seasonal Adjustments Induce Noncausal Dynamics in Inflation Rates?," Econometrics, MDPI, vol. 5(4), pages 1-22, October.
    33. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    34. Choudhry, Taufiq, 1995. "High inflation rates and the long-run money demand function: Evidence from cointegration tests," Journal of Macroeconomics, Elsevier, vol. 17(1), pages 77-91.
    35. Mendez Parra, Maximiliano, 2015. "Seasonal Unit Roots and Structural Breaks in agricultural time series: Monthly exports and domestic supply in Argentina," MPRA Paper 63831, University Library of Munich, Germany, revised 06 Apr 2015.
    36. Raimundo Soto & Matías Tapia, 2001. "Seasonal cointegration and the stability of the demand for money," Working Papers Central Bank of Chile 103, Central Bank of Chile.

  35. Ghysels, Eric & Hall, Alastair, 1990. "A Test for Structural Stability of Euler Conditions Parameters Estimated via the Generalized Method of Moments Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(2), pages 355-364, May.
    See citations under working paper version above.
  36. Ghysels, Eric & Hall, Alastair, 1990. "Are consumption-based intertemporal capital asset pricing models structural?," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 121-139.

    Cited by:

    1. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    2. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    3. Ghysels, E., 1995. "On Stable Factor Structurs in the Pricing of Risk," Cahiers de recherche 9525, Universite de Montreal, Departement de sciences economiques.
    4. Ghysels, Eric & Guay, Alain & Hall, Alastair, 1998. "Predictive tests for structural change with unknown breakpoint," Journal of Econometrics, Elsevier, vol. 82(2), pages 209-233, February.
    5. Dimitris Hatzinikolaou, 1997. "Does government growth reduce precautionary saving?," Applied Economics, Taylor & Francis Journals, vol. 29(4), pages 419-423.
    6. Dimitris Hatzinikolaou & Pantelis Kammas, 2010. "Firing Restrictions, Government Growth, Immigration, and the NAIRU: Evidence from Fifteen OECD Countries," LABOUR, CEIS, vol. 24(4), pages 441-455, December.
    7. Pieter J. Van Der Sluis, 1998. "Computationally attractive stability tests for the efficient method of moments," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 203-227.
    8. Jan, Yin-Ching & Chou, Peter Shyan-Rong & Hung, Mao-Wei, 2000. "Pacific Basin stock markets and international capital asset pricing," Global Finance Journal, Elsevier, vol. 11(1-2), pages 1-16.
    9. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    10. Sungbae An & Yongsung Chang & Sun-Bin Kim, 2007. "Can a Representative Agent Model Represent a Heterogeneous Agent Economy?," Discussion Paper Series 0714, Institute of Economic Research, Korea University.
    11. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    12. Garcia, Rene & Ghysels, Eric, 1998. "Structural change and asset pricing in emerging markets," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 455-473, June.
    13. Pieter J. van der Sluis, 1998. "Structural Stability Tests with Unknown Breakpoint for the Efficient Method of Moments with Application to Stochastic Volatility Models," Tinbergen Institute Discussion Papers 98-055/4, Tinbergen Institute.
    14. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    15. Neil R. Ericsson & John S. Irons, 1995. "The Lucas critique in practice: theory without measurement," International Finance Discussion Papers 506, Board of Governors of the Federal Reserve System (U.S.).
    16. Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
    17. Jason Cummins & R. Glenn Hubbard, 1995. "The Tax Sensitivity of Foreign Direct Investment: Evidence from Firm-Level Panel Data," NBER Chapters, in: The Effects of Taxation on Multinational Corporations, pages 123-152, National Bureau of Economic Research, Inc.
    18. Dufour, Jean-Marie & Ghysels, Eric, 1996. "Editors' introduction recent developments in the econometrics of structural change," Journal of Econometrics, Elsevier, vol. 70(1), pages 1-8, January.
    19. Hall, Alastair R. & Han, Sanggohn & Boldea, Otilia, 2008. "Asymptotic Distribution Theory for Break Point Estimators in Models Estimated via 2SLS," MPRA Paper 9472, University Library of Munich, Germany.
    20. Daniel Smith, 2008. "Testing for structural breaks in GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 845-862.
    21. John S. Irons & N. Ericsson, "undated". "An early version of The Lucas Critique in Practice: Theory without Measurement," Home Pages _004, Massachussets Institute of Technology, Economics.
    22. Becker, Ralf, 1998. "Die verallgemeinerte Momentenmethode: Darstellung und Anwendung," Arbeitspapiere des Instituts für Statistik und Ökonometrie 16, Johannes Gutenberg-Universität Mainz, Institut für Statistik und Ökonometrie.
    23. Bekaert, Geert & Hodrick, Robert J., 1993. "On biases in the measurement of foreign exchange risk premiums," Journal of International Money and Finance, Elsevier, vol. 12(2), pages 115-138, April.
    24. Hatzinikolaou, Dimitris, 1999. "Modelling consumption: permanent-income or rule-of-thumb behaviour?," Economic Modelling, Elsevier, vol. 16(2), pages 293-306, April.
    25. Chrétien, Stéphane, 2012. "Bounds on the autocorrelation of admissible stochastic discount factors," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1943-1962.
    26. Oliner, Stephen D. & Rudebusch, Glenn D. & Sichel, Daniel, 1996. "The Lucas critique revisited assessing the stability of empirical Euler equations for investment," Journal of Econometrics, Elsevier, vol. 70(1), pages 291-316, January.
    27. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    28. Li, Hong, 2008. "Estimation and testing of Euler equation models with time-varying reduced-form coefficients," Journal of Econometrics, Elsevier, vol. 142(1), pages 425-448, January.
    29. Kramer, Charles, 1999. "Noise trading, transaction costs, and the relationship of stock returns and trading volume," International Review of Economics & Finance, Elsevier, vol. 8(4), pages 343-362, November.
    30. Laurence Bloch & Françoise Maurel, 1991. "Consommation-revenu permanent : un regard d'économètre," Économie et Prévision, Programme National Persée, vol. 99(3), pages 113-144.
    31. James M. Nason, 1991. "The permanent income hypothesis when the bliss point is stochastic," Discussion Paper / Institute for Empirical Macroeconomics 46, Federal Reserve Bank of Minneapolis.
    32. Clare, A. D. & Smith, P. N. & Thomas, S. H., 1997. "UK stock returns and robust tests of mean variance efficiency," Journal of Banking & Finance, Elsevier, vol. 21(5), pages 641-660, May.
    33. Sen, Amit, 1999. "Approximate p-values of predictive tests for structural stability," Economics Letters, Elsevier, vol. 63(3), pages 245-253, June.
    34. Mouna Cherkaoui & Eric Ghysels, 1999. "Emerging Markets and Trading Costs," CIRANO Working Papers 99s-04, CIRANO.
    35. Daniel G. Swaine, 2001. "Are taste and technology parameters stable? a test of \"deep\" parameter stability in real business cycle models of the U.S. economy," Working Papers 01-05, Federal Reserve Bank of Boston.
    36. Sangdai Ryoo, 2002. "Testing for Sunspot in the Foreign Exchange Market," International Economic Journal, Taylor & Francis Journals, vol. 16(3), pages 39-58.
    37. Nicholas Apergis & Spyros Zikos, 2003. "The Law of Verdoorn: Evidence from Greek Disaggregated Manufacturing Time Series Data," The Economic and Social Review, Economic and Social Studies, vol. 34(1), pages 87-104.
    38. Lund, Jesper & Engsted, Tom, 1996. "GMM and present value tests of the C-CAPM: evidence from the Danish, German, Swedish and UK stock markets," Journal of International Money and Finance, Elsevier, vol. 15(4), pages 497-521, August.
    39. Garcia, René, 1998. "Modèles d’évaluation des actifs financiers dans les marchés boursiers en émergence : identification des facteurs de risque et tests de changement structurel," L'Actualité Economique, Société Canadienne de Science Economique, vol. 74(3), pages 467-484, septembre.

  37. Ghysels, Eric, 1987. "Seasonal Extraction in the Presence of Feedback," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 191-194, April.

    Cited by:

    1. Richard M. Todd, 1989. "Periodic linear-quadratic methods for modeling seasonality," Staff Report 127, Federal Reserve Bank of Minneapolis.
    2. Myles Callan & Eric Ghysels & Norman R. Swanson, 1998. "Monetary Policy Rules with Model and Data Uncertainty," CIRANO Working Papers 98s-40, CIRANO.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.