IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.05584.html
   My bibliography  Save this paper

Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform

Author

Listed:
  • Michele Leonardo Bianchi
  • Gian Luca Tassinari

Abstract

In this study we suggest a portfolio selection framework based on option-implied information and multivariate non-Gaussian models. The proposed models incorporate skewness, kurtosis and more complex dependence structures among stocks log-returns than the simple correlation matrix. The two models considered are a multivariate extension of the normal tempered stable (NTS) model and the generalized hyperbolic (GH) model, respectively, and the connection between the historical measure P and the risk-neutral measure Q is given by the Esscher transform. We consider an estimation method that simultaneously calibrate the time series of univariate log-returns and the univariate observed volatility smile. To calibrate the models, there is no need of liquid multivariate derivative quotes. The method is applied to fit a 50-dimensional series of stock returns, to evaluate widely known portfolio risk measures and to perform a portfolio selection analysis.

Suggested Citation

  • Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
  • Handle: RePEc:arx:papers:1805.05584
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.05584
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
    2. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    3. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    4. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    5. Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
    6. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    7. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
    8. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    9. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    10. Taboga, Marco, 2016. "Option-implied probability distributions: How reliable? How jagged?," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 453-469.
    11. Ballotta, Laura & Deelstra, Griselda & Rayée, Grégory, 2017. "Multivariate FX models with jumps: Triangles, Quantos and implied correlation," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1181-1199.
    12. Stoyan Stoyanov & Borjana Racheva-Iotova & Svetlozar Rachev & Frank Fabozzi, 2010. "Stochastic models for risk estimation in volatile markets: a survey," Annals of Operations Research, Springer, vol. 176(1), pages 293-309, April.
    13. Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
    14. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    15. Sara Cecchetti & Laura Sigalotti, 2013. "Forward-looking robust portfolio selection," Temi di discussione (Economic working papers) 913, Bank of Italy, Economic Research and International Relations Area.
    16. Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    2. Michele Leonardo Bianchi, 2018. "Are multi-factor Gaussian term structure models still useful? An empirical analysis on Italian BTPs," Papers 1805.09996, arXiv.org.
    3. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    4. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    2. Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
    3. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    4. Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
    5. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Sensitivity analysis of Mixed Tempered Stable parameters with implications in portfolio optimization," Computational Management Science, Springer, vol. 16(1), pages 71-95, February.
    6. Cheng Peng & Young Shin Kim & Stefan Mittnik, 2022. "Portfolio Optimization on Multivariate Regime-Switching GARCH Model with Normal Tempered Stable Innovation," JRFM, MDPI, vol. 15(5), pages 1-23, May.
    7. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    8. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    9. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    10. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    11. Runhuan Feng & Chongda Liu & Stephen Taylor, 2023. "Peer-to-peer risk sharing with an application to flood risk pooling," Annals of Operations Research, Springer, vol. 321(1), pages 813-842, February.
    12. Ali, Sajid & Raza, Naveed & Vinh Vo, Xuan & Le, Van, 2022. "Modelling the joint dynamics of financial assets using MGARCH family models: Insights into hedging and diversification strategies," Resources Policy, Elsevier, vol. 78(C).
    13. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    14. Ergun, Lerby M., 2023. "Extreme downside risk in the cross-section of asset returns," International Review of Financial Analysis, Elsevier, vol. 90(C).
    15. Montshioa, Keitumetse & Muteba Mwamba, John Weirstrass & Bonga-Bonga, Lumengo, 2021. "Asset allocation in extreme market conditions: a comparative analysis between developed and emerging economies," MPRA Paper 106248, University Library of Munich, Germany.
    16. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    17. Gong, Xiaoli & Zhuang, Xintian, 2017. "Pricing foreign equity option under stochastic volatility tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 83-93.
    18. Michele Leonardo Bianchi, 2014. "Are the log-returns of Italian open-end mutual funds normally distributed? A risk assessment perspective," Temi di discussione (Economic working papers) 957, Bank of Italy, Economic Research and International Relations Area.
    19. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    20. Foguesatto, Cristian Rogério & Righi, Marcelo Brutti & Müller, Fernanda Maria, 2024. "Is there a dark side to financial inclusion? Understanding the relationship between financial inclusion and market risk," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.05584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.