IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101696.html
   My bibliography  Save this paper

Periodic autoregressive conditional duration

Author

Listed:
  • Aknouche, Abdelhakim
  • Almohaimeed, Bader
  • Dimitrakopoulos, Stefanos

Abstract

We propose an autoregressive conditional duration (ACD) model with periodic time-varying parameters and multiplicative error form. We name this model periodic autoregressive conditional duration (PACD). First, we study the stability properties and the moment structures of it. Second, we estimate the model parameters, using (profile and two-stage) Gamma quasi-maximum likelihood estimates (QMLEs), the asymptotic properties of which are examined under general regularity conditions. Our estimation method encompasses the exponential QMLE, as a particular case. The proposed methodology is illustrated with simulated data and two empirical applications on forecasting Bitcoin trading volume and realized volatility. We found that the PACD produces better in-sample and out-of-sample forecasts than the standard ACD.

Suggested Citation

  • Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
  • Handle: RePEc:pra:mprapa:101696
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101696/1/MPRA_paper_101696.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/106785/8/MPRA_paper_106785.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
    2. Saranjeet Kaur Bhogal & Ramanathan Thekke Variyam, 2019. "Conditional Duration Models For High‐Frequency Data: A Review On Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(1), pages 252-273, February.
    3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    4. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    5. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    6. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    7. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    8. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Ambach, Daniel & Schmid, Wolfgang, 2015. "Periodic and long range dependent models for high frequency wind speed data," Energy, Elsevier, vol. 82(C), pages 277-293.
    10. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    11. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    12. Ilias Tsiakas, 2006. "Periodic Stochastic Volatility and Fat Tails," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 90-135.
    13. Cedric L. Mbanga, 2019. "The day-of-the-week pattern of price clustering in Bitcoin," Applied Economics Letters, Taylor & Francis Journals, vol. 26(10), pages 807-811, June.
    14. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    15. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    16. Boynton, Wentworth & Oppenheimer, Henry R. & Reid, Sean F., 2009. "Japanese day-of-the-week return patterns: New results," Global Finance Journal, Elsevier, vol. 20(1), pages 1-12.
    17. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    18. Giampiero M. Gallo & Edoardo Otranto, 2018. "Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 549-573, April.
    19. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
    20. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    21. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    22. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    23. Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
    24. Nikolaus Hautsch, 2012. "Econometrics of Financial High-Frequency Data," Springer Books, Springer, number 978-3-642-21925-2, February.
    25. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    26. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    2. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    3. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
    4. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    5. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    6. Aknouche Abdelhakim & Demmouche Nacer & Dimitrakopoulos Stefanos & Touche Nassim, 2020. "Bayesian analysis of periodic asymmetric power GARCH models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-24, September.
    7. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    8. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    9. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
    10. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    11. Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
    12. Heejoon Han & Myung D. Park & Shen Zhang, 2015. "A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 209-219, April.
    13. Aknouche, Abdelhakim & Rabehi, Nadia, 2024. "Inspecting a seasonal ARIMA model with a random period," MPRA Paper 120758, University Library of Munich, Germany.
    14. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 594-616.
    15. Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
    16. Adriana Bortoluzzo & Pedro Morettin & Clelia Toloi, 2010. "Time-varying autoregressive conditional duration model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 847-864.
    17. Wu, Xinyu & Xie, Haibin & Zhang, Huanming, 2022. "Time-varying risk aversion and renminbi exchange rate volatility: Evidence from CARR-MIDAS model," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    18. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    19. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Ke, Rui & Lu, Wanbo & Jia, Jing, 2021. "Evaluating multiplicative error models: A residual-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

    More about this item

    Keywords

    Positive time series; autoregressive conditional duration; periodic time-varying models; multiplicative error models; exponential QMLE; two-stage Gamma QMLE.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.