IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201908.html
   My bibliography  Save this paper

The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis

Author

Listed:
  • Sonali Das

    (Advanced Mathematical Modelling, Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa and Department of Statistics, Nelson Mandela University, Port Elizabeth, South Africa)

  • Riza Demirer

    (Department of Economics & Finance, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1102, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, South Africa)

  • Siphumlile Mangisa

    (Department of Statistics, Nelson Mandela University, Port Elizabeth, South Africa)

Abstract

This paper presents a novel, mixed-frequency based regression approach, derived from Functional Data Analysis (FDA), to analyze the effect of global crises on stock market correlations, using a long span of data, dating as far back as late 1800s, thus covering a wide range of global crises that have not yet been examined in the literature in this context. Focusing on the advanced nations in the G7 group, we observe heterogeneous effects of global crises on the time-varying correlations between the US stock market and its counterparts in the G7. While the post World War II period experienced a general rise in the level of correlations among developed stock market returns, we find that global crises in general have resulted in a stronger association of US stock market performance with that in the UK and Canada, whereas the opposite holds when it comes to how European and Japanese stock markets co-move with the US. Further analysis of sub-periods, however, reveals that the crises effect over stock market correlations is largely driven by the context and nature of the crises that possibly drive the perception of risk in financial markets. Overall, our results tend to suggest that in the wake of crises that are global in nature, diversification benefits will be limited by moving funds across the US and UK stock markets whereas possible diversification benefits would have been possible during the crises-ridden period of the early twentieth century by holding positions in equities in the remaining G7 nations to supplement positions in the US. However, these diversification benefits seem to have frittered away in the post World War II period, highlighting the role of emerging markets and alternative assets to improve diversification benefits in the modern era.

Suggested Citation

  • Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201908
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    2. Kizys, Renatas & Pierdzioch, Christian, 2006. "Business-cycle fluctuations and international equity correlations," Global Finance Journal, Elsevier, vol. 17(2), pages 252-270, December.
    3. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    4. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Do precious metal prices help in forecasting South African inflation?," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.
    5. Rıza Demirer & Shrikant P. Jategaonkar, 2013. "The conditional relation between dispersion and return," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 125-134, September.
    6. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    7. Adams, Zeno & Füss, Roland & Glück, Thorsten, 2017. "Are correlations constant? Empirical and theoretical results on popular correlation models in finance," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 9-24.
    8. Carmen M. Reinhart & Kenneth S. Rogoff, 2014. "This Time is Different: A Panoramic View of Eight Centuries of Financial Crises," Annals of Economics and Finance, Society for AEF, vol. 15(2), pages 215-268, November.
    9. Stivers, Christopher T., 2003. "Firm-level return dispersion and the future volatility of aggregate stock market returns," Journal of Financial Markets, Elsevier, vol. 6(3), pages 389-411, May.
    10. Yonghong Jiang & Mengmeng Yu & Shabir Mohsin Hashmi, 2017. "The Financial Crisis and Co-Movement of Global Stock Markets—A Case of Six Major Economies," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    11. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    12. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity, and (Non-) Asymptotic Properties of the Dynamic Conditional Correlation (DCC) Model," JRFM, MDPI, vol. 12(2), pages 1-9, April.
    13. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    14. Bouri, Elie & Gupta, Rangan & Wong, Wing-Keung & Zhu, Zhenzhen, 2018. "Is wine a good choice for investment?," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 171-183.
    15. Ľuboš Pástor & Pietro Veronesi, 2020. "Political Cycles and Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 128(11), pages 4011-4045.
    16. Ramsay, James O. & Ramsey, James B., 2002. "Functional data analysis of the dynamics of the monthly index of nondurable goods production," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 327-344, March.
    17. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    18. Suits, Daniel B & Mason, Andrew & Chan, Louis, 1978. "Spline Functions Fitted by Standard Regression Methods," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 132-139, February.
    19. Roman Horvath & Petr Poldauf, 2012. "International Stock Market Comovements: What Happened during the Financial Crisis?," Global Economy Journal (GEJ), World Scientific Publishing Co. Pte. Ltd., vol. 12(1), pages 1-21, March.
    20. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    21. Yarovaya, Larisa & Lau, Marco Chi Keung, 2016. "Stock market comovements around the Global Financial Crisis: Evidence from the UK, BRICS and MIST markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 605-619.
    22. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    23. Michael McAleer, 2019. "What They Did Not Tell You about Algebraic (Non-) Existence, Mathematical (IR-)Regularity and (Non-) Asymptotic Properties of the Full BEKK Dynamic Conditional Covariance Model," JRFM, MDPI, vol. 12(2), pages 1-7, April.
    24. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    25. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    26. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    27. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    28. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    29. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    30. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    31. Adnen Ben Nasr & Matteo Bonato & Riza Demirer & Rangan Gupta, 2019. "Investor Sentiment and Crash Risk in Safe Havens," Journal of Economics and Behavioral Studies, AMH International, vol. 10(6), pages 97-108.
    32. Rey, Hélène, 2015. "Dilemma not Trilemma: The Global Financial Cycle and Monetary Policy Independence," CEPR Discussion Papers 10591, C.E.P.R. Discussion Papers.
    33. Gregory R. Duffee, 2001. "Asymmetric cross-sectional dispersion in stock returns: evidence and implications," Working Paper Series 2000-18, Federal Reserve Bank of San Francisco.
    34. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    35. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    36. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    37. Lieven Baele & Pilar Soriano, 2010. "The determinants of increasing equity market comovement: economic or financial integration?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(3), pages 573-589, September.
    38. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    39. Loungani, Prakash & Rush, Mark & Tave, William, 1990. "Stock market dispersion and unemployment," Journal of Monetary Economics, Elsevier, vol. 25(3), pages 367-388, June.
    40. Kizys, Renatas & Pierdzioch, Christian, 2009. "Changes in the international comovement of stock returns and asymmetric macroeconomic shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(2), pages 289-305, April.
    41. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    42. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    43. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    44. Hwang, Eugene & Min, Hong-Ghi & Kim, Bong-Han & Kim, Hyeongwoo, 2013. "Determinants of stock market comovements among US and emerging economies during the US financial crisis," Economic Modelling, Elsevier, vol. 35(C), pages 338-348.
    45. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Arslanturk, Yalcin, 2010. "Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window," Energy Economics, Elsevier, vol. 32(6), pages 1398-1410, November.
    46. Rey, Hélène & Miranda-Agrippino, Silvia, 2015. "World Asset Markets and the Global Financial Cycle," CEPR Discussion Papers 10936, C.E.P.R. Discussion Papers.
    47. Kofman, Paul & Koedijk, Kees & Campbell, Rachel, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    48. Demirer, Riza & Omay, Tolga & Yuksel, Asli & Yuksel, Aydin, 2018. "Global risk aversion and emerging market return comovements," Economics Letters, Elsevier, vol. 173(C), pages 118-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jalloul, Maya & Miescu, Mirela, 2023. "Equity market connectedness across regimes of geopolitical risks: Historical evidence and theory," Journal of International Money and Finance, Elsevier, vol. 137(C).
    2. Maya Jalloul & Mirela Miescu, 2021. "Equity Market Connectedness across Regimes of Geopolitical Risks," Working Papers 324219805, Lancaster University Management School, Economics Department.
    3. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    4. Giovanna Bua & Carmine Trecroci, 2019. "International equity markets interdependence: bigger shocks or contagion in the 21st century?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 155(1), pages 43-69, February.
    5. Chollete, Loran & Ning, Cathy, 2010. "Asymmetric Dependence in US Financial Risk Factors?," UiS Working Papers in Economics and Finance 2011/2, University of Stavanger.
    6. Changqing, Luo & Chi, Xie & Cong, Yu & Yan, Xu, 2015. "Measuring financial market risk contagion using dynamic MRS-Copula models: The case of Chinese and other international stock markets," Economic Modelling, Elsevier, vol. 51(C), pages 657-671.
    7. Khalaf, Lynda & Kichian, Maral & Saunders, Charles J. & Voia, Marcel, 2021. "Dynamic panels with MIDAS covariates: Nonlinearity, estimation and fit," Journal of Econometrics, Elsevier, vol. 220(2), pages 589-605.
    8. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    9. Demirer, Riza & Omay, Tolga & Yuksel, Asli & Yuksel, Aydin, 2018. "Global risk aversion and emerging market return comovements," Economics Letters, Elsevier, vol. 173(C), pages 118-121.
    10. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    11. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    12. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    13. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    14. Maria Kasch & Massimiliano Caporin, 2013. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 706-742, September.
    15. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    16. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    17. Ji, Qiang & Liu, Bing-Yue & Cunado, Juncal & Gupta, Rangan, 2020. "Risk spillover between the US and the remaining G7 stock markets using time-varying copulas with Markov switching: Evidence from over a century of data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    18. Cai, Charlie X. & Mobarek, Asma & Zhang, Qi, 2017. "International stock market leadership and its determinants," Journal of Financial Stability, Elsevier, vol. 33(C), pages 150-162.
    19. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.

    More about this item

    Keywords

    Functional data analysis; global crises; stock markets; comovements; G7;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G01 - Financial Economics - - General - - - Financial Crises
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.