IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/98s-35.html
   My bibliography  Save this paper

Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint

Author

Listed:
  • René Garcia
  • Ramazan Gençay

Abstract

We estimate a generalized option pricing formula that has a functional shape similar to the usual Black-Scholes formula by a feedforward neural network model. This functional shape is obtained when the option pricing function is homogeneous of degree one with respect to the underlying asset price and the strike price. We show that pricing accuracy gains can be made by exploiting this generalized Black-Scholes shape. Instead of setting up a learning network mapping the ratio asset price/strike price and the time to maturity directly into the derivative price, we break down the pricing function into two parts, one controlled by the ratio asset price/strike price, the other one by a function of time to maturity. The results indicate that the homogeneity hint always reduces the out-of-sample mean squared prediction error compared with a feedforward neural network with no hint. Both feedforward network models, with and without the hint, provide similar delta-hedging errors that are small relative to the hedging performance of the Black-Scholes model. However, the model with hint produces a more stable hedging performance ¸ l'aide d'un modèle de réseaux de neurones, nous estimons une formule d'évaluation d'option généralisée qui a une forme fonctionnelle similaire à la formule de Black-Scholes habituelle. Cette forme fonctionnelle s'obtient lorsque le prix d'option est une fonction homogène de degré un par rapport au prix de l'actif sous-jacent et au prix d'exercice. Nous montrons que cette forme généralisée de Black-Scholes nous permet de prévoir plus précisément les prix d'options. Au lieu de construire notre réseau d'apprentissage en entrant directement le rapport prix de l'actif sous-jacent / prix d'exercice et l'échéance dans la fonction de prix, nous décomposons cette dernière en deux parties, l'une contrôlée par le rapport prix de l'actif sous-jacent / prix d'exercice l'autre par une fonction de l'échéance. Les résultats indiquent que la forme fondée sur l'homogénéité permet toujours de réduire l'erreur quadratique moyenne de prévision hors échantillon par rapport à un réseau de neurones n'utilisant pas l'homogénéité. Les deux réseaux, avec ou sans l'homogénéité, produisent des erreurs de couverture comparables qui sont petites par rapport à la performance de couverture du modèle de Black-Scholes. Toutefois, le modèle fondé sur l'homogénéité produit une performance de couverture plus stable.

Suggested Citation

  • René Garcia & Ramazan Gençay, 1998. "Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint," CIRANO Working Papers 98s-35, CIRANO.
  • Handle: RePEc:cir:cirwor:98s-35
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/98s-35.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    2. Yacine Aït-Sahalia & Andrew W. Lo, "undated". "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    3. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    4. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    5. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    6. Eric Ghysels & Valentin Patilea & Eric Renault & Olivier Torrès, 1997. "Nonparametric Methods and Option Pricing," CIRANO Working Papers 97s-19, CIRANO.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Amin, Kaushik I & Ng, Victor K, 1993. "Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    9. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    10. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    11. Bailey, Warren & Stulz, René M., 1989. "The Pricing of Stock Index Options in a General Equilibrium Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(1), pages 1-12, March.
    12. repec:taf:emetrv:v:13:y:1994:i:1:p:1-91 is not listed on IDEAS
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    15. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.
    6. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    7. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. René Garcia & Richard Luger & Éric Renault, 2005. "Viewpoint: Option prices, preferences, and state variables," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(1), pages 1-27, February.
    10. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    11. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    12. Naoto Kunitomo & Yong‐Jin Kim, 2007. "Effects Of Stochastic Interest Rates And Volatility On Contingent Claims," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 71-106, March.
    13. René Garcia & Eric Renault, 1999. "Latent Variable Models for Stochastic Discount Factors," CIRANO Working Papers 99s-47, CIRANO.
    14. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    15. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    16. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    17. Anna Pajor, 2008. "Bayesian Forecasting of the Discounted Payoff of Options on WIG20 Index under Stochastic Volatility and Stochastic Interest Rates," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 147-154.
    18. Yong-Jin Kim & Naoto Kunitomo, 1999. "Pricing Options under Stochastic Interest Rates: A New Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 49-70, January.
    19. Clement, E. & Gourieroux, C. & Monfort, A., 2000. "Econometric specification of the risk neutral valuation model," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 117-143.
    20. Hu, May & Park, Jason, 2019. "Valuation of collateralized debt obligations: An equilibrium model," Economic Modelling, Elsevier, vol. 82(C), pages 119-135.
    21. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.