IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v6y2014i4p237-273.html
   My bibliography  Save this article

Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market

Author

Listed:
  • Roman Huptas

    (Cracow University of Economics)

Abstract

In recent years, autoregressive conditional duration models (ACD models) introduced by Engle and Russell in 1998 have become very popular in modelling of the durations between selected events of the transaction process (trade durations or price durations) and modelling of financial market microstructure effects. The aim of the paper is to develop Bayesian inference for the ACD models. Different specifications of ACD models will be considered and compared with particular emphasis on the linear ACD model, Box-Cox ACD model, augmented Box-Cox ACD model and augmented (Hentschel) ACD model. The analysis will consider models with the Burr distribution and the generalized Gamma distribution for the innovation term. Bayesian inference will be presented and practically used in estimation of and prediction within ACD models describing trade durations. The MCMC methods including Metropolis-Hastings algorithm are suitably adopted to obtain samples from the posterior densities of interest. The empirical part of the work includes modelling of trade durations of selected equities from the Polish stock market.

Suggested Citation

  • Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
  • Handle: RePEc:psc:journl:v:6:y:2014:i:4:p:237-273
    as

    Download full text from publisher

    File URL: http://www.cejeme.eu/publishedarticles/2014-39-24-635550503633906250-9463.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    2. Luc Bauwens & Pierre Giot, 2003. "Asymmetric ACD models: Introducing price information in ACD models," Empirical Economics, Springer, vol. 28(4), pages 709-731, November.
    3. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    4. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    5. David Veredas & Juan Rodriguez-Poo & Antoni Espasa, 2001. "On the (Intradaily) Seasonality and Dynamics of a Financial Point Process : A Semiparametric Approach," Working Papers 2001-19, Center for Research in Economics and Statistics.
    6. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
    7. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    8. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    9. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    10. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    11. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    12. de Jong,Frank & Rindi,Barbara, 2009. "The Microstructure of Financial Markets," Cambridge Books, Cambridge University Press, number 9780521867849, September.
    13. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    14. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    15. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    16. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    17. Nikolaus Hautsch, 2012. "Econometrics of Financial High-Frequency Data," Springer Books, Springer, number 978-3-642-21925-2, January.
    18. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    19. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    20. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    21. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    22. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    23. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    25. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    26. Alfonso Dufour & Robert F Engle, 2000. "The ACD Model: Predictability of the Time Between Concecutive Trades," ICMA Centre Discussion Papers in Finance icma-dp2000-05, Henley Business School, University of Reading.
    27. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    28. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    29. Malgorzata Doman, 2008. "Information Impact on Stock Price Dynamics," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 13-20.
    30. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    31. Hautsch, Nikolaus, 2002. "Modelling Intraday Trading Activity Using Box-Cox-ACD Models," CoFE Discussion Papers 02/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    32. Roman Huptas, 2009. "Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 128-138.
    33. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    34. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    2. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    3. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    4. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    5. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    6. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    7. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    8. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    9. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    10. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    11. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    12. Danúbia R. Cunha & Roberto Vila & Helton Saulo & Rodrigo N. Fernandez, 2020. "A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data," JRFM, MDPI, vol. 13(3), pages 1-20, March.
    13. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    14. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    15. Vasileios Siakoulis & Ioannis Venetis, 2015. "On inter-arrival times of bond market extreme events. An application to seven European markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(4), pages 717-741, October.
    16. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    17. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    18. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    20. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    21. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    22. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    autoregressive conditional duration model (ACD model); trade durations; financial market microstructure; Bayesian inference;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:6:y:2014:i:4:p:237-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.