IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v6y2021i11p113-d670942.html
   My bibliography  Save this article

Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)

Author

Listed:
  • Pradeep Mishra

    (College of Agriculture, Powarkheda, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur 461110, India)

  • Khder Alakkari

    (Department of Statistics and Programming, Faculty of Economics, University of Tishreen, Lattakia P.O. Box 2230, Syria)

  • Mostafa Abotaleb

    (Department of System Programming, South Ural State University, 454080 Chelyabinsk, Russia)

  • Pankaj Kumar Singh

    (R.D. Engineering College, Ghazibad 01001, India)

  • Shilpi Singh

    (R.D. Engineering College, Ghazibad 01001, India)

  • Monika Ray

    (Regional Research and Technology Transfer Station (OUAT), Keonjhar 758002, India)

  • Soumitra Sankar Das

    (Department of Statistics, Birsa Agricultural University, Kanke, Ranchi 834006, India)

  • Umme Habibah Rahman

    (Department of Statistics, Assam University, Silchar 788011, India)

  • Ali J. Othman

    (Department of Commodity Research and Commodity Expertise, Plekhanov Russian University of Economics, 117997 Moscow, Russia)

  • Nazirya Alexandrovna Ibragimova

    (Department of Commodity Research and Commodity Expertise, Plekhanov Russian University of Economics, 117997 Moscow, Russia)

  • Gulfishan Firdose Ahmed

    (Department of Computer Science, College of Agriculture—JNKVV, Hoshangabad 461110, India)

  • Fozia Homa

    (Department of Statistics, Mathematics, and Computer Application, Bihar Agricultural University, Sabour, Bhagalpur 813210, India)

  • Pushpika Tiwari

    (M. Phil (NRM), Indian Institute of Forest Management (IIFM), Bhopal 462001, India)

  • Ritisha Balloo

    (Department of Law and Management, University of Mauritius, Reduit 80837, Mauritius)

Abstract

Economics suffers from a blurred view of the economy due to the delay in the official publication of macroeconomic variables and, essentially, of the most important variable of real GDP. Therefore, this paper aimed at nowcasting GDP in India based on high-frequency data released early. Instead of using a large set of data thus increasing statistical complexity, two main indicators of the Indian economy (economic policy uncertainty and consumer price index) were relied on. The paper followed the MIDAS–Almon (PDL) weighting approach, which allowed us to successfully capture structural breaks and predict Indian GDP for the second quarter of 2021, after evaluating the accuracy of the nowcasting and out-of-sample prediction. Our results indicated low values of the RMSE in the sample and when predicting the out-of-sample1- and 4-quarter horizon, but RMSE increased when predicting the 10-quarter horizon. Due to the effect of the short-term structural break, we found that RMSE values decreased for the last prediction point.

Suggested Citation

  • Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
  • Handle: RePEc:gam:jdataj:v:6:y:2021:i:11:p:113-:d:670942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/6/11/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/6/11/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Susanto Basu & Brent Bundick, 2017. "Uncertainty Shocks in a Model of Effective Demand," Econometrica, Econometric Society, vol. 85, pages 937-958, May.
    3. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    4. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    5. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    8. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    9. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
    10. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    11. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    12. Daniela Bragoli & Jack Fosten, 2018. "Nowcasting Indian GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
    13. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    14. Soumya Bhadury & Sanjib Pohit & Robert C. M. Beyer, 2018. "A new approach to nowcast Indian Gross Value Added," NCAER Working Papers 115, National Council of Applied Economic Research.
    15. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    16. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    17. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    18. Perron, Pierre & Vogelsang, Timothy J, 1992. "Testing for a Unit Root in a Time Series with a Changing Mean: Corrections and Extensions," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 467-470, October.
    19. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    20. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    21. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    22. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    23. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    24. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
    2. Muddassar Bilal & Ammar Alawadh & Nosheen Rafi & Shamim Akhtar, 2024. "Analyzing the Impact of Vision 2030’s Economic Reforms on Saudi Arabia’s Consumer Price Index," Sustainability, MDPI, vol. 16(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Bree J. Lang & Pratish Patel, 2023. "Funding infrastructure under uncertainty: evidence from tax credit prices," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(3), pages 635-677, June.
    5. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    6. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    7. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    8. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    9. Ma, Xiaohan & Samaniego, Roberto, 2019. "Deconstructing uncertainty," European Economic Review, Elsevier, vol. 119(C), pages 22-41.
    10. Redl, Chris, 2020. "Uncertainty matters: Evidence from close elections," Journal of International Economics, Elsevier, vol. 124(C).
    11. Arbatli Saxegaard, Elif C. & Davis, Steven J. & Ito, Arata & Miake, Naoko, 2022. "Policy uncertainty in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 64(C).
    12. Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2023. "The confidence channel of U.S. financial uncertainty: Evidence from industry-level data," Economic Modelling, Elsevier, vol. 129(C).
    13. Claeys, Peter & Vašíček, Bořek, 2019. "Transmission of uncertainty shocks: Learning from heterogeneous responses on a panel of EU countries," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 62-83.
    14. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    15. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
    16. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    17. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    18. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    19. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    20. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:6:y:2021:i:11:p:113-:d:670942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.