IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/1211.html
   My bibliography  Save this paper

Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures

Author

Abstract

Parsimoniously specified distributed lag models have enjoyed a resurgence under the MiDaS moniker (Mixed Data Sampling) as a feasible way to model time series observed at very different sampling frequencies. I introduce cointegrating mixed data sampling (CoMiDaS) regressions. I derive asymptotic limits under substantially more general conditions than the extant theoretical literature allows. In addition to the possibility of cointegrated series, I allow for regressors and an error term with general correlation patterns, both serially and mutually. The nonlinear least squares estimator still obtains consistency to the minimum mean-squared forecast error parameter vector, and the asymptotic distribution of the coefficient vector is Gaussian with a possibly singular variance. I propose a novel test of a MiDaS null against a more general and possibly infeasible alternative mixed- frequency specification. An empirical application to nowcasting global real economic activity using monthly financial covariates illustrates the utility of the approach.

Suggested Citation

  • J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:1211
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1z8gQQk6LD9nh1UOPCMFOUSu13yDCRlIL/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 2009. "Discrete Time Representations Of Cointegrated Continuous Time Models With Mixed Sample Data," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1030-1049, August.
    2. Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
    3. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    4. Christoffersen, Peter F & Diebold, Francis X, 1998. "Cointegration and Long-Horizon Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
    5. Stock], James H., 1987. "Temporal aggregation and structural inference in macroeconomics a comment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 26(1), pages 131-139, January.
    6. Pons, Gabriel & Sansó, Andreu, 2005. "Estimation Of Cointegrating Vectors With Time Series Measured At Different Periodicity," Econometric Theory, Cambridge University Press, vol. 21(4), pages 735-756, August.
    7. Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014. "Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
    8. Michelle T. Armesto & Rub…N Hern¡Ndez-Murillo & Michael T. Owyang & Jeremy Piger, 2009. "Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 35-55, February.
    9. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    10. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    11. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    12. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    13. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    14. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    15. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    16. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    17. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
    18. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    19. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    20. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    21. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    22. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    23. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    24. Miller, J. Isaac & Ni, Shawn, 2011. "Long-Term Oil Price Forecasts: A New Perspective On Oil And The Macroeconomy," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 396-415, November.
    25. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    26. Byeongchan Seong & Sung K. Ahn & Peter Zadrozny, 2007. "Cointegration Analysis with Mixed-Frequency Data," CESifo Working Paper Series 1939, CESifo.
    27. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    28. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    29. Alfred A. Haug, 2002. "Temporal Aggregation and the Power of Cointegration Tests: a Monte Carlo Study," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 399-412, September.
    30. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    31. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    32. Phillips, P C B, 1991. "Error Correction and Long-Run Equilibrium in Continuous Time," Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
    33. Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
    34. Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
    35. Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
    36. He, Yanan & Wang, Shouyang & Lai, Kin Keung, 2010. "Global economic activity and crude oil prices: A cointegration analysis," Energy Economics, Elsevier, vol. 32(4), pages 868-876, July.
    37. Anthony Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Working Papers 14-2007, Singapore Management University, School of Economics.
    38. Jens Hogrefe, 2008. "Forecasting data revisions of GDP: a mixed frequency approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 271-296, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    2. Maolin Cheng & Bin Liu, 2019. "Analysis on the Influence of China’s Energy Consumption on Economic Growth," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    3. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    4. Chambers, Marcus J., 2020. "Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data," Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
    5. J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
    6. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    7. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    8. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    9. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    10. Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
    11. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    12. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    13. Marçal, Emerson Fernandes & Zimmermann, Beatrice Aline & Mendonça, Diogo de Prince & Merlin, Giovanni Tondin, 2015. "Does mixed frequency vector error correction model add relevant information to exchange misalignment calculus? Evidence for United States," Textos para discussão 385, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    14. J. Isaac Miller, 2016. "Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
    15. Chi-Wei Su & Yuru Song & Hsu-Ling Chang & Weike Zhang & Meng Qin, 2023. "Could Cryptocurrency Policy Uncertainty Facilitate U.S. Carbon Neutrality?," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    16. Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    2. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    3. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    4. Eric Ghysels & J. Isaac Miller, 2015. "Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
    5. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    6. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    7. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    8. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    9. Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122, Emerald Group Publishing Limited.
    10. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    11. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    12. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    13. Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
    14. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    15. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    16. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    17. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    18. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    19. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    20. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.

    More about this item

    Keywords

    cointegration; mixed-frequency time series; mixed data sampling (MiDaS); autoregressive distributed lag; GDP forecasts;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.