Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
References listed on IDEAS
- Chambers, Marcus J., 2009. "Discrete Time Representations Of Cointegrated Continuous Time Models With Mixed Sample Data," Econometric Theory, Cambridge University Press, vol. 25(4), pages 1030-1049, August.
- Anthony S. Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Development Economics Working Papers 22482, East Asian Bureau of Economic Research.
- James D. Hamilton, 2009.
"Causes and Consequences of the Oil Shock of 2007-08,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
- James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," NBER Working Papers 15002, National Bureau of Economic Research, Inc.
- James D. Hamilton, 2010. "Causes and consequences of the oil shock of 2007–08," FRB Atlanta CQER Working Paper 2009-02, Federal Reserve Bank of Atlanta.
- Christoffersen, Peter F & Diebold, Francis X, 1998.
"Cointegration and Long-Horizon Forecasting,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 450-458, October.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "Cointegration and Long-Horizon Forecasting," NBER Technical Working Papers 0217, National Bureau of Economic Research, Inc.
- Mr. Francis X. Diebold & Mr. Peter F. Christoffersen, 1997. "Cointegration and Long-Horizon Forecasting," IMF Working Papers 1997/061, International Monetary Fund.
- Peter F. Christoffersen & Francis X. Diebold, 1997. "Cointegration and long-horizon forecasting," Working Papers 97-14, Federal Reserve Bank of Philadelphia.
- Stock], James H., 1987. "Temporal aggregation and structural inference in macroeconomics a comment," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 26(1), pages 131-139, January.
- Pons, Gabriel & Sansó, Andreu, 2005. "Estimation Of Cointegrating Vectors With Time Series Measured At Different Periodicity," Econometric Theory, Cambridge University Press, vol. 21(4), pages 735-756, August.
- Thomas B. Götz & Alain Hecq & Jean‐Pierre Urbain, 2014.
"Forecasting Mixed‐Frequency Time Series with ECM‐MIDAS Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 198-213, April.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Forecasting Mixed Frequency Time Series with ECM-MIDAS Models," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Michelle T. Armesto & Rub…N Hern¡Ndez-Murillo & Michael T. Owyang & Jeremy Piger, 2009.
"Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 35-55, February.
- Michelle T. Armesto & Rubén Hernández‐Murillo & Michael T. Owyang & Jeremy Piger, 2009. "Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(1), pages 35-55, February.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Robert B. Barsky & Lutz Kilian, 2004.
"Oil and the Macroeconomy Since the 1970s,"
Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
- Barsky, Robert & Kilian, Lutz, 2004. "Oil and the Macroeconomy Since the 1970s," CEPR Discussion Papers 4496, C.E.P.R. Discussion Papers.
- Robert Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," NBER Working Papers 10855, National Bureau of Economic Research, Inc.
- Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Michael P. Clements & Ana Beatriz Galvao, 2009.
"Forecasting US output growth using leading indicators: an appraisal using MIDAS models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
- Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
- Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001.
"Nonlinear econometric models with cointegrated and deterministically trending regressors,"
Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
- Yoosoon Chang & Joon Y. Park & Peter C.B. Phillips, 1999. "Nonlinear Econometric Models with Cointegrated and Deterministically Trending Regressors," Cowles Foundation Discussion Papers 1245, Cowles Foundation for Research in Economics, Yale University.
- Lutz Kilian, 2008.
"Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?,"
The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
- Kilian, Lutz, 2005. "Exogenous Oil Supply Shocks: How Big Are They and How Much do they Matter for the US Economy?," CEPR Discussion Papers 5131, C.E.P.R. Discussion Papers.
- Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010.
"Regression models with mixed sampling frequencies,"
Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
- Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
- Libero Monteforte & Gianluca Moretti, 2013.
"Real‐Time Forecasts of Inflation: The Role of Financial Variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
- Libero Monteforte & Gianluca Moretti, "undated". "Real time forecasts of inflation: the role of financial variables," Working Papers wp2011-6, Department of the Treasury, Ministry of the Economy and of Finance.
- Libero Monteforte & Gianluca Moretti, 2010. "Real time forecasts of inflation: the role of financial variables," Temi di discussione (Economic working papers) 767, Bank of Italy, Economic Research and International Relations Area.
- Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
- J. Isaac Miller, 2016.
"Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
- J. Isaac Miller, 2011. "Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series," Working Papers 1103, Department of Economics, University of Missouri, revised 30 May 2012.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Granger, C. W. J. & Siklos, Pierre L., 1995.
"Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence,"
Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
- Granger, C.W.J. & Siklos, P.L., 1993. "Systematic Sampling, Temporal Aggregation, Seasonal Adjustment, and Cointegration: Theory and Evidence," Working Papers 93001, Wilfrid Laurier University, Department of Economics.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
- Miller, J. Isaac & Ni, Shawn, 2011.
"Long-Term Oil Price Forecasts: A New Perspective On Oil And The Macroeconomy,"
Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 396-415, November.
- J. Isaac Miller & Shawn Ni, 2010. "Long-Term Oil Price Forecasts: A New Perspective on Oil and the Macroeconomy," Working Papers 1012, Department of Economics, University of Missouri.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Byeongchan Seong & Sung K. Ahn & Peter Zadrozny, 2007. "Cointegration Analysis with Mixed-Frequency Data," CESifo Working Paper Series 1939, CESifo.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Ghysels, Eric & Wright, Jonathan H., 2009.
"Forecasting Professional Forecasters,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
- Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
- Alfred A. Haug, 2002. "Temporal Aggregation and the Power of Cointegration Tests: a Monte Carlo Study," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 399-412, September.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
- Phillips, P C B, 1991.
"Error Correction and Long-Run Equilibrium in Continuous Time,"
Econometrica, Econometric Society, vol. 59(4), pages 967-980, July.
- Peter C.B. Phillips, 1988. "Error Correction and Long Run Equilibrium in Continuous Time," Cowles Foundation Discussion Papers 882R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
- Tom Doan, "undated". "PHILLIPSHANNAN: RATS procedure to compute Phillips-Hannan Efficient estimator for multivariate regressions," Statistical Software Components RTS00158, Boston College Department of Economics.
- Chambers, Marcus J., 2003. "The Asymptotic Efficiency Of Cointegration Estimators Under Temporal Aggregation," Econometric Theory, Cambridge University Press, vol. 19(1), pages 49-77, February.
- Marcellino, Massimiliano, 1999. "Some Consequences of Temporal Aggregation in Empirical Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 129-136, January.
- Neville Francis & Eric Ghysels & Michael T. Owyang, 2011. "The low-frequency impact of daily monetary policy shocks," Working Papers 2011-009, Federal Reserve Bank of St. Louis.
- He, Yanan & Wang, Shouyang & Lai, Kin Keung, 2010. "Global economic activity and crude oil prices: A cointegration analysis," Energy Economics, Elsevier, vol. 32(4), pages 868-876, July.
- Anthony Tay, 2007. "Financial Variables as Predictors of Real Output Growth," Working Papers 14-2007, Singapore Management University, School of Economics.
- Jens Hogrefe, 2008. "Forecasting data revisions of GDP: a mixed frequency approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 271-296, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
- Maolin Cheng & Bin Liu, 2019. "Analysis on the Influence of China’s Energy Consumption on Economic Growth," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
- Eric Ghysels & J. Isaac Miller, 2014.
"On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests,"
Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122,
Emerald Group Publishing Limited.
- Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Working Papers 1403, Department of Economics, University of Missouri.
- Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
- Eric Ghysels & J. Isaac Miller, 2015.
"Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
- Eric Ghysels & J. Isaac Miller, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," Working Papers 1307, Department of Economics, University of Missouri, revised 07 May 2014.
- Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
- Chambers, Marcus J., 2020.
"Frequency domain estimation of cointegrating vectors with mixed frequency and mixed sample data,"
Journal of Econometrics, Elsevier, vol. 217(1), pages 140-160.
- Chambers, MJ, 2018. "Frequency Domain Estimation of Cointegrating Vectors with Mixed Frequency and Mixed Sample Data," Economics Discussion Papers 21144, University of Essex, Department of Economics.
- Thomas B. Götz & Alain W. Hecq, 2019.
"Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
- Hecq, Alain & Goetz, Thomas, 2018. "Granger causality testing in mixed-frequency Vars with possibly (co)integrated processes," MPRA Paper 87746, University Library of Munich, Germany.
- Marçal, Emerson Fernandes & Zimmermann, Beatrice Aline & Mendonça, Diogo de Prince & Merlin, Giovanni Tondin, 2015.
"Does mixed frequency vector error correction model add relevant information to exchange misalignment calculus? Evidence for United States,"
Textos para discussão
385, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Diogo De Prince Mendonça & Emerson Fernandes Marçal & Beatrice Zimmermann & Giovanni Merlin, 2016. "Does Mixed Frequency Vector Error Correction Model Add Relevant Information To Exchange Misalignment Calculus? Evidence For United States," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 043, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cui, Xiaomeng & Gafarov, Bulat & Ghanem, Dalia & Kuffner, Todd, 2024. "On model selection criteria for climate change impact studies," Journal of Econometrics, Elsevier, vol. 239(1).
- J. Isaac Miller & Xi Wang, 2016. "Implementing Residual-Based KPSS Tests for Cointegration with Data Subject to Temporal Aggregation and Mixed Sampling Frequencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 810-824, November.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016.
"Testing for Granger causality with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
- Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
- Miller, J. Isaac & Nam, Kyungsik, 2022.
"Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions,"
Energy Economics, Elsevier, vol. 114(C).
- J. Isaac Miller & Kyungsik Nam, 2021. "Modeling Peak Electricity Demand: A Semiparametric Approach Using Weather-Driven Cross Temperature Response Functions," Working Papers 2112, Department of Economics, University of Missouri.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- J. Isaac Miller, 2016.
"Conditionally Efficient Estimation of Long-Run Relationships Using Mixed-Frequency Time Series,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1142-1171, June.
- J. Isaac Miller, 2011. "Conditionally Efficient Estimation of Long-run Relationships Using Mixed-frequency Time Series," Working Papers 1103, Department of Economics, University of Missouri, revised 30 May 2012.
- Chi-Wei Su & Yuru Song & Hsu-Ling Chang & Weike Zhang & Meng Qin, 2023. "Could Cryptocurrency Policy Uncertainty Facilitate U.S. Carbon Neutrality?," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
- Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
- Eric Ghysels & J. Isaac Miller, 2015.
"Testing for Cointegration with Temporally Aggregated and Mixed-Frequency Time Series,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 797-816, November.
- Ghysels, Eric & Miller, J. Isaac, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," CEPR Discussion Papers 9654, C.E.P.R. Discussion Papers.
- Eric Ghysels & J. Isaac Miller, 2013. "Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series," Working Papers 1307, Department of Economics, University of Missouri, revised 07 May 2014.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
- Eric Ghysels & J. Isaac Miller, 2014.
"On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests,"
Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 14, pages 93-122,
Emerald Group Publishing Limited.
- Eric Ghysels & J. Isaac Miller, 2014. "On the Size Distortion from Linearly Interpolating Low-frequency Series for Cointegration Tests," Working Papers 1403, Department of Economics, University of Missouri.
- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016.
"Testing for Granger causality in large mixed-frequency VARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
- Götz, T.B. & Hecq, A.W., 2014. "Testing for Granger causality in large mixed-frequency VARs," Research Memorandum 028, Maastricht University, Graduate School of Business and Economics (GSBE).
- Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
- Götz, T.B. & Hecq, A.W. & Smeekes, S., 2015. "Testing for Granger Causality in Large Mixed-Frequency VARs," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Maghyereh Aktham & Sweidan Osama & Awartani Basel, 2020. "Asymmetric Responses of Economic Growth to Daily Oil Price Changes: New Global Evidence from Mixed-data Sampling Approach," Review of Economics, De Gruyter, vol. 71(2), pages 81-99, August.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Papers No 3/2014, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
More about this item
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:12:y:2014:i:3:p:584-614.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.