Forecasting EUA futures volatility with geopolitical risk: evidence from GARCH-MIDAS models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11846-023-00722-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- van Binsbergen, Jules H. & Diamond, William F. & Grotteria, Marco, 2022.
"Risk-free interest rates,"
Journal of Financial Economics, Elsevier, vol. 143(1), pages 1-29.
- van Binsbergen, Jules & Diamond, William & Grotteria, Marco, 2019. "Risk-Free Interest Rates," CEPR Discussion Papers 13899, C.E.P.R. Discussion Papers.
- Jules H. van Binsbergen & William F. Diamond & Marco Grotteria, 2019. "Risk-Free Interest Rates," NBER Working Papers 26138, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Liu, Xiaojia & An, Haizhong & Wang, Lijun & Jia, Xiaoliang, 2017. "An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms," Applied Energy, Elsevier, vol. 185(P2), pages 1778-1787.
- Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
- Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015.
"Measuring Uncertainty,"
American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2013. "Measuring Uncertainty," NBER Working Papers 19456, National Bureau of Economic Research, Inc.
- Ledoit, Oliver & Wolf, Michael, 2008.
"Robust performance hypothesis testing with the Sharpe ratio,"
Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
- Oliver Ledoit & Michael Wolf, 2008. "Robust Performance Hypothesis Testing with the Sharpe Ratio," IEW - Working Papers 320, Institute for Empirical Research in Economics - University of Zurich.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Baur, Dirk G. & Smales, Lee A., 2020. "Hedging geopolitical risk with precious metals," Journal of Banking & Finance, Elsevier, vol. 117(C).
- Brandt, Michael W. & Gao, Lin, 2019. "Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 64-94.
- François M. Longin, 1999. "Optimal margin level in futures markets: Extreme price movements," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 127-152, April.
- Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
- Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
- Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
- Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Nicholas Bloom, 2009.
"The Impact of Uncertainty Shocks,"
Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
- Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
- Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
- Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
- Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2021.
"Geopolitical risk and forecastability of tail risk in the oil market: Evidence from over a century of monthly data,"
Energy, Elsevier, vol. 235(C).
- Afees A. Salisu & Christian Pierdzioch & Rangan Gupta, 2021. "Geopolitical Risk and Forecastability of Tail Risk in the Oil Market: Evidence from Over a Century of Monthly Data," Working Papers 202122, University of Pretoria, Department of Economics.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Ferhat Akbas & Chao Jiang & Paul D. Koch, 2020. "Insider Investment Horizon," Journal of Finance, American Finance Association, vol. 75(3), pages 1579-1627, June.
- Amendola, Alessandra & Braione, Manuela & Candila, Vincenzo & Storti, Giuseppe, 2020. "A Model Confidence Set approach to the combination of multivariate volatility forecasts," International Journal of Forecasting, Elsevier, vol. 36(3), pages 873-891.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
- Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022.
"The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model,"
Resources Policy, Elsevier, vol. 78(C).
- Peng-Fei Dai & Xiong Xiong & Wei-Xing Zhou, 2020. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Papers 2007.12838, arXiv.org.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022.
"Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the COVID-19 recession and recovery: Lessons from the financial crisis," Working Papers 20-14, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2020.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the Covid-19 Recession and Recovery: Lessons from the Financial Crisis," CIRANO Working Papers 2020s-32, CIRANO.
- Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: lessons from the financial crisis," Working Paper Series 2468, European Central Bank.
- Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024.
"Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks,"
International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
- Mawuli Segnon & Rangan Gupta & Bernd Wilfling, 2022. "Forecasting Stock Market Volatility with Regime-Switching GARCH-MIDAS: The Role of Geopolitical Risks," Working Papers 202203, University of Pretoria, Department of Economics.
- Wu, Jie & Zhao, Ruizeng & Sun, Jiasen & Zhou, Xuewei, 2023. "Impact of geopolitical risks on oil price fluctuations: Based on GARCH-MIDAS model," Resources Policy, Elsevier, vol. 85(PB).
- Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
- Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Bandi, Federico M. & Bretscher, Lorenzo & Tamoni, Andrea, 2023. "Return predictability with endogenous growth," Journal of Financial Economics, Elsevier, vol. 150(3).
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Huabin Bian & Renhai Hua & Qingfu Liu & Ping Zhang, 2022. "Petroleum market volatility tracker in China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(11), pages 2022-2040, November.
- Bhanu Pratap & Nalin Priyaranjan, 2023. "Macroeconomic effects of uncertainty: a Google trends-based analysis for India," Empirical Economics, Springer, vol. 65(4), pages 1599-1625, October.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
- Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
More about this item
Keywords
Volatility forecasting; Geopolitical risk index; Carbon futures; GARCH-MIDAS models; Economic gain;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:rvmgts:v:18:y:2024:i:7:d:10.1007_s11846-023-00722-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.