IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v67y2021ics0927538x21000809.html
   My bibliography  Save this article

Commonality in disagreement

Author

Listed:
  • Gong, Qiang
  • Jacoby, Gady
  • Li, Shi
  • Lu, Lei

Abstract

We examine the relationship between firms' individual disagreement and the aggregate disagreement. We find that a commonality in firms' individual disagreements exists at the market level, industry level, and geographic level. This commonality increases with a firm's asymmetric information, uncertainty, and the degree of coverage, but decreases with a firm's accounting information quality. We show that disagreement commonality can be a new measure of firm-specific information centering on analysts. We find a positive relationship between firms' commonality in disagreement and co-movement in their stock returns. A higher disagreement commonality may indicate lower usefulness of firm-specific information that strengthens the synchronicity between a firm's stock return and the market return. Our measure of disagreement commonality is especially useful among inefficient markets where analysts are heavily relied on by investors, such as Asia Pacific markets.

Suggested Citation

  • Gong, Qiang & Jacoby, Gady & Li, Shi & Lu, Lei, 2021. "Commonality in disagreement," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
  • Handle: RePEc:eee:pacfin:v:67:y:2021:i:c:s0927538x21000809
    DOI: 10.1016/j.pacfin.2021.101573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X21000809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2021.101573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Bloom, 2016. "Fluctuations in uncertainty," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    2. Han, Bing & Lu, Lei & Zhou, Yi, 2019. "Two Trees with Heterogeneous Beliefs: Spillover Effect of Disagreement," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(4), pages 1791-1819, August.
    3. Andrea Buraschi & Fabio Trojani & Andrea Vedolin, 2014. "When Uncertainty Blows in the Orchard: Comovement and Equilibrium Volatility Risk Premia," Journal of Finance, American Finance Association, vol. 69(1), pages 101-137, February.
    4. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    5. Gu, Ming & Jiang, George J. & Xu, Bu, 2019. "The role of analysts: An examination of the idiosyncratic volatility anomaly in the Chinese stock market," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 237-254.
    6. Dang, Tung Lam & Moshirian, Fariborz & Zhang, Bohui, 2015. "Commonality in news around the world," Journal of Financial Economics, Elsevier, vol. 116(1), pages 82-110.
    7. Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
    8. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    9. Alexander David, 2008. "Heterogeneous Beliefs, Speculation, and the Equity Premium," Journal of Finance, American Finance Association, vol. 63(1), pages 41-83, February.
    10. repec:eme:cfripp:cfri-06-2016-0049 is not listed on IDEAS
    11. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    12. Jiang, George J. & Lu, Liangliang & Zhu, Dongming, 2014. "The information content of analyst recommendation revisions — Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 1-17.
    13. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    14. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    15. Evan W. Anderson & Eric Ghysels & Jennifer L. Juergens, 2005. "Do Heterogeneous Beliefs Matter for Asset Pricing?," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 875-924.
    16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    17. Kamara, Avraham & Lou, Xiaoxia & Sadka, Ronnie, 2008. "The divergence of liquidity commonality in the cross-section of stocks," Journal of Financial Economics, Elsevier, vol. 89(3), pages 444-466, September.
    18. George, Thomas J & Kaul, Gautam & Nimalendran, M, 1991. "Estimation of the Bid-Ask Spread and Its Components: A New Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 623-656.
    19. Chen, Xuanjuan & Kim, Kenneth A. & Yao, Tong & Yu, Tong, 2010. "On the predictability of Chinese stock returns," Pacific-Basin Finance Journal, Elsevier, vol. 18(4), pages 403-425, September.
    20. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    21. Chan, Kalok & Hameed, Allaudeen, 2006. "Stock price synchronicity and analyst coverage in emerging markets," Journal of Financial Economics, Elsevier, vol. 80(1), pages 115-147, April.
    22. Cheema, Muhammad A. & Nartea, Gilbert V., 2014. "Momentum returns and information uncertainty: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 173-188.
    23. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    24. Carlin, Bruce I. & Longstaff, Francis A. & Matoba, Kyle, 2014. "Disagreement and asset prices," Journal of Financial Economics, Elsevier, vol. 114(2), pages 226-238.
    25. Andrea Buraschi & Fabio Trojani & Andrea Vedolin, 2014. "Economic Uncertainty, Disagreement, and Credit Markets," Management Science, INFORMS, vol. 60(5), pages 1281-1296, May.
    26. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    27. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    28. Cheung, Yan-Leung & Jiang, Ping & LIMPAPHAYOM, Piman & Lu, Tong, 2008. "Does corporate governance matter in China?," China Economic Review, Elsevier, vol. 19(3), pages 460-479, September.
    29. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    30. Doukas, John A. & Kim, Chansog (Francis) & Pantzalis, Christos, 2006. "Divergence of Opinion and Equity Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(3), pages 573-606, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzong-Haw Lee & Brian Lee & Yi-Ju Su & Hung-Hao Chang, 2022. "Green Payment Programs and Farmland Prices—An Empirical Investigation," Agriculture, MDPI, vol. 12(2), pages 1-11, February.
    2. Huang, Wenli & Zhu, Yuanhao & Li, Shi & Xu, Yueling, 2024. "Institutional investor heterogeneity and systemic financial risk: Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, George P. & Lu, Xiaomeng & Song, Zhaogang & Yan, Hongjun, 2019. "Disagreement beta," Journal of Monetary Economics, Elsevier, vol. 107(C), pages 96-113.
    2. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    3. Hibbert, Ann Marie & Kang, Qiang & Kumar, Alok & Mishra, Suchi, 2020. "Heterogeneous beliefs and return volatility around seasoned equity offerings," Journal of Financial Economics, Elsevier, vol. 137(2), pages 571-589.
    4. Wang, Hailong & Hu, Duni, 2022. "Heterogenous beliefs with sentiments and asset pricing," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    5. Hollstein, Fabian & Prokopczuk, Marcel, 2022. "Testing Factor Models in the Cross-Section," Journal of Banking & Finance, Elsevier, vol. 145(C).
    6. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    7. Wu, Yuliang & Mazouz, Khelifa, 2016. "Long-term industry reversals," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 236-250.
    8. Ince, Baris, 2022. "Liquidity components: Commonality in liquidity, underreaction, and equity returns," Journal of Financial Markets, Elsevier, vol. 60(C).
    9. Zhiqi Cao & Wenfeng Wu, 2023. "Difference of opinion among investors versus analysts," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(2), pages 2347-2381, June.
    10. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    11. Sensoy, Ahmet, 2017. "Firm size, ownership structure, and systematic liquidity risk: The case of an emerging market," Journal of Financial Stability, Elsevier, vol. 31(C), pages 62-80.
    12. Fang, Yue & Luo, Deming & Yao, Zhongwei, 2024. "Belief dispersion in the Chinese stock market and fund flows," Journal of Banking & Finance, Elsevier, vol. 166(C).
    13. Jacobs, Heiko & Weber, Martin, 2015. "On the determinants of pairs trading profitability," Journal of Financial Markets, Elsevier, vol. 23(C), pages 75-97.
    14. Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
    15. Al-Nasseri, Alya & Menla Ali, Faek, 2018. "What does investors' online divergence of opinion tell us about stock returns and trading volume?," Journal of Business Research, Elsevier, vol. 86(C), pages 166-178.
    16. Turan G. Bali & Andriy Bodnaruk & Anna Scherbina & Yi Tang, 2018. "Unusual News Flow and the Cross Section of Stock Returns," Management Science, INFORMS, vol. 64(9), pages 4137-4155, September.
    17. Ling Cen & K. C. John Wei & Liyan Yang, 2017. "Disagreement, Underreaction, and Stock Returns," Management Science, INFORMS, vol. 63(4), pages 1214-1231, April.
    18. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    19. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019. "Size and value in China," Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
    20. David Hirshleifer & Po-Hsuan Hsu & Dongmei Li, 2018. "Innovative Originality, Profitability, and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2553-2605.

    More about this item

    Keywords

    Disagreement; Information environment; Stock return co-movement;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:67:y:2021:i:c:s0927538x21000809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.