IDEAS home Printed from https://ideas.repec.org/p/uto/dipeco/202207.html
   My bibliography  Save this paper

Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions

Author

Listed:

Abstract

Over the years, benefits of domestic tourism have been shadowed by the exponential growth of international tourism, despite the former representing a crucial resource, especially at times of geopolitical instability and pandemics. Therefore, forecasting domestic tourism across different regions and sub-regions becomes fundamental to determine its viability as a substitution of international tourism during the COVID-19 pandemic and to evaluate the effectiveness of governmental incentive policies introduced for its promotion. To this aim, and given the availability of data sampled at different frequencies, mixed data-sampling (MIDAS) models have been employed to estimate and predict domestic tourism expenditures, arrivals, and overnight stays. To this aim, we consider the specific case of Italy for illustrative purposes.

Suggested Citation

  • Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
  • Handle: RePEc:uto:dipeco:202207
    as

    Download full text from publisher

    File URL: https://www.est.unito.it/do/home.pl/Download?doc=/allegati/wp2022dip/wp_07_2022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Massidda, Carla & Etzo, Ivan, 2012. "The determinants of Italian domestic tourism: A panel data analysis," Tourism Management, Elsevier, vol. 33(3), pages 603-610.
    3. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    4. Gianluca Cafiso & Roberto Cellini & Tiziana Cuccia, 2018. "Do economic crises lead tourists to closer destinations? Italy at the time of the Great Recession," Papers in Regional Science, Wiley Blackwell, vol. 97(2), pages 369-386, June.
    5. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    6. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    7. Cristina Bernini & Augusto Cerqua & Guido Pellegrini, 2020. "Endogenous amenities, tourists’ happiness and competitiveness," Regional Studies, Taylor & Francis Journals, vol. 54(9), pages 1214-1225, September.
    8. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    9. Teresa Guardia Gálvez & Juan Muro Romero & María Jesús Such Devesa, 2014. "Measuring and Analysing Domestic Tourism: The Importance of an Origin and Destination Matrix," Tourism Economics, , vol. 20(3), pages 451-472, June.
    10. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    11. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    12. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    13. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    14. Sebastien Bourdin & Ludovic Jeanne & Fabien Nadou & Gabriel Noiret, 2021. "Does lockdown work? A spatial analysis of the spread and concentration of Covid-19 in Italy," Regional Studies, Taylor & Francis Journals, vol. 55(7), pages 1182-1193, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    2. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    3. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    4. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    5. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    6. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    7. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    8. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    9. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    10. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    11. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    12. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    13. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    14. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    15. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    16. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    17. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    18. Bonino-Gayoso, Nicolás & García-Hiernaux, Alfredo, 2019. "TF-MIDAS: a new mixed-frequency model to forecast macroeconomic variables," MPRA Paper 93366, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uto:dipeco:202207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Piero Cavaleri or Marina Grazioli (email available below). General contact details of provider: https://edirc.repec.org/data/detorit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.