IDEAS home Printed from https://ideas.repec.org/a/sgh/erfinj/v4y2019i2p133-156.html
   My bibliography  Save this article

On The Accuracy of GARCH Estimation in R Packages

Author

Listed:
  • Chelsey Hill

    (Department of Decision Sciences & MIS, Drexel University)

  • B. D. McCullough

    (Department of Decision Sciences & MIS, Drexel University)

Abstract

The R software is commonly used in applied finance and generalized autoregressive conditionally heteroskedastic (GARCH) estimation is a staple of applied finance; many papers use R to compute GARCH estimates. While R offers three different packages that compute GARCH estimates, they are not equally accurate. We apply the FCP GARCH benchmark (Fiorentini, Calzolari and Panattoni, 1996), proposed by McCullough and Renfro (1999), which uses the Bollerslev and Ghysels (1996) daily returns data, on three R packages: fGarch, rugarch, and tseries.

Suggested Citation

  • Chelsey Hill & B. D. McCullough, 2019. "On The Accuracy of GARCH Estimation in R Packages," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(2), pages 133-156, December.
  • Handle: RePEc:sgh:erfinj:v:4:y:2019:i:2:p:133-156
    as

    Download full text from publisher

    File URL: http://erfin.org/journal/index.php/erfin/article/view/64
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nash, John C., 2014. "On Best Practice Optimization Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i02).
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    4. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. B. D. McCullough & H. D. Vinod, 2004. "Verifying the Solution from a Nonlinear Solver: A Case Study: Reply," American Economic Review, American Economic Association, vol. 94(1), pages 400-406, March.
    8. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanting Chen & Peter R. Hartley & Yihui Lan, 2023. "Temperature, storage, and natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(4), pages 549-575, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    4. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    5. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    6. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    7. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    8. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    9. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    10. Chowdhury, Anup & Uddin, Moshfique & Anderson, Keith, 2022. "Trading behaviour and market sentiment: Firm-level evidence from an emerging Islamic market," Global Finance Journal, Elsevier, vol. 53(C).
    11. Sabiruzzaman, Md. & Monimul Huq, Md. & Beg, Rabiul Alam & Anwar, Sajid, 2010. "Modeling and forecasting trading volume index: GARCH versus TGARCH approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 141-145, May.
    12. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    13. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    14. Regnard, Nazim & Zakoïan, Jean-Michel, 2011. "A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices," Energy Economics, Elsevier, vol. 33(6), pages 1240-1251.
    15. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    16. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    17. Iorember, Paul & Sokpo, Joseph & Usar, Terzungwe, 2017. "Inflation and Stock Market Returns Volatility: Evidence from the Nigerian Stock Exchange 1995Q1-2016Q4: An E-GARCH Approach," MPRA Paper 85656, University Library of Munich, Germany.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    19. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    20. Naseem Al Rahahleh & Robert Kao, 2018. "Forecasting Volatility: Evidence from the Saudi Stock Market," JRFM, MDPI, vol. 11(4), pages 1-18, November.

    More about this item

    Keywords

    algorithms; benchmark; software accuracy; GARCH;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:erfinj:v:4:y:2019:i:2:p:133-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dobromił Serwa (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.