IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i2p164-188.html
   My bibliography  Save this article

Portmanteau tests for periodic ARMA models with dependent errors

Author

Listed:
  • Y. Boubacar Maïnassara
  • A. Ilmi Amir

Abstract

In this article, we derive the asymptotic distributions of residual and normalized residual empirical autocovariances and autocorrelations of (parsimonious) periodic autoregressive moving‐average (PARMA) models under the assumption that the errors are uncorrelated but not necessarily independent. We then deduce the modified portmanteau statistics. We establish the asymptotic behavior of the proposed statistics. It is shown that the asymptotic distribution of the modified portmanteau tests is that of a weighted sum of independent chi‐squared random variables, which can be different from the usual chi‐squared approximation used under independent and identically distributed assumption on the noise. We also propose another test based on a self‐normalization approach to check the adequacy of PARMA models. A set of Monte Carlo experiments and an application to financial data are presented.

Suggested Citation

  • Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:2:p:164-188
    DOI: 10.1111/jtsa.12692
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12692
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    2. A. I. McLeod, 1995. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 647-648, November.
    3. Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
    4. Xiaofeng Shao, 2010. "Corrigendum: A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 695-696, November.
    5. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    6. Boubacar Mainassara, Y. & Francq, C., 2011. "Estimating structural VARMA models with uncorrelated but non-independent error terms," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 496-505, March.
    7. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    8. Eugen Ursu & Pierre Duchesne, 2009. "On modelling and diagnostic checking of vector periodic autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 70-96, January.
    9. I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
    10. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. repec:bla:jtsera:v:25:y:2004:3:p:359-372 is not listed on IDEAS
    13. Pierre Duchesne & Pierre Lafaye de Micheaux, 2013. "Distributions for residual autocovariances in parsimonious periodic vector autoregressive models with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 496-507, July.
    14. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    15. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    16. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    17. Ercan Balaban & Asli Bayar & Ozgur Berk Kan, 2001. "Stock returns, seasonality and asymmetric conditional volatility in world equity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 8(4), pages 263-268.
    18. Xiaofeng Shao, 2012. "Parametric Inference in Stationary Time Series Models with Dependent Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 772-783, December.
    19. Yacouba Boubacar Maïnassara & Bruno Saussereau, 2018. "Diagnostic Checking in Multivariate ARMA Models With Dependent Errors Using Normalized Residual Autocorrelations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1813-1827, October.
    20. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    21. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Yacouba Boubacar Maïnassara & Youssef Esstafa & Bruno Saussereau, 2021. "Estimating FARIMA models with uncorrelated but non-independent error terms," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 549-608, October.
    3. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    4. Yeonwoo Rho & Xiaofeng Shao, 2015. "Inference for Time Series Regression Models With Weakly Dependent and Heteroscedastic Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 444-457, July.
    5. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
    6. Yacouba Boubacar Maïnassara & Landy Rabehasaina, 2020. "Estimation of weak ARMA models with regime changes," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 1-52, April.
    7. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    8. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    9. Kim, Seonjin & Zhao, Zhibiao & Shao, Xiaofeng, 2015. "Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 277-290.
    10. Zhang, Jingsi & Jiang, Wenxin & Shao, Xiaofeng, 2013. "Bayesian model selection based on parameter estimates from subsamples," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 979-986.
    11. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    12. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    13. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    14. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
    15. Boubacar Maïnassara, Yacouba & Raïssi, Hamdi, 2015. "Semi-strong linearity testing in linear models with dependent but uncorrelated errors," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 110-115.
    16. Abdoulkarim Ilmi Amir & Yacouba Boubacar Maïnassara, 2020. "Multivariate portmanteau tests for weak multiplicative seasonal VARMA models," Statistical Papers, Springer, vol. 61(6), pages 2529-2560, December.
    17. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    18. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    19. Boubacar Mainassara, Yacouba, 2009. "Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms," MPRA Paper 18990, University Library of Munich, Germany.
    20. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:2:p:164-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.