IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v69y2021i4p491-518.html
   My bibliography  Save this article

Minimum information management and price‐abundance relationships in a fishery

Author

Listed:
  • Akbar Marvasti
  • Sami Dakhlia

Abstract

We explore the information content of dockside prices and fishing costs in the estimation of stock abundance. Our approach is two‐pronged: we first examine whether the implied biomass, that is, the biomass that is consistent with a simple microeconomic model calibrated with observed prices and costs, offers an approximation of actual stock assessments—both agree over the first 20 years of observation, but diverge over the last five. In a second approach, we use annual data in Vector Autoregressive (VAR), Bayesian VAR (B‐VAR), and Vector Error Correction (VEC) frameworks and add monthly data in a mixed‐frequency data analysis including Mixed‐Frequency Bayesian VAR (MF‐BVAR) and Mixed‐Data Sampling (MIDAS) frameworks for log‐differenced time series. Parameter uncertainties are addressed through Bayesian regression and forecasting methods. We find a statistically significant correlation between biometric estimates and changes in a price‐based indicator that is robust to the inclusion of confounding factors. We conclude that the combination of price data and per‐trip landings, when interpreted with care, can serve as a complementary, but comparatively affordable and timely, source of information for stock assessments. Nous étudions le contenu informationnel des prix du poisson à la criée et des coûts d'exploitation dans le but d'estimer l'abondance des stocks. Notre approche comporte deux volets: dans un premier temps, nous calculons la biomasse implicite, c'est à dire la biomasse qui, compte tenu des prix et des quantités débarquées, est en accord avec un simple modéle d'optimisation des profits. La biomasse implicite et l'estimation biométrique des stocks sont en concordance sur une période de 20 ans, puis divergent sur les cinq dernières années. Dans un deuxième temps, nous utilisons les données annuelles dans le cadre du modèle autorégressif vectoriel (VAR), du VAR bayésien (B‐VAR), et du modèle vectoriel à correction d'erreur (VEC). Nous incorporons ensuite les données mensuelles pour une analyse à fréquences mixtes des séries chronologiques en différence logarithmique, y compris le VAR bayésien à fréquences mixtes (MF‐BVAR) et le modèle de données échantillonnales à fréquences mixtes (MIDAS). Les incertitudes relatives aux paramètres sont adressées par le biais de régressions et prévisions bayésiennes. Nous trouvons une corrélation statistiquement significative entre la mesure d'abondance biométrique et un indice basé sur les prix, corrélation robuste malgré la considération d'une variété de facteurs confondants. Nous concluons qu'une interprétation judicieuse des prix et des quantités débarquées peut produire un complément d'information rapide et peu dispendieux.

Suggested Citation

  • Akbar Marvasti & Sami Dakhlia, 2021. "Minimum information management and price‐abundance relationships in a fishery," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 69(4), pages 491-518, December.
  • Handle: RePEc:bla:canjag:v:69:y:2021:i:4:p:491-518
    DOI: 10.1111/cjag.12299
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12299
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ikerne Del Valle & Inmaculada Astorkiza & Kepa Astorkiza, 2003. "Fishing effort validation and substitution possibilities among components: the case study of the VIII division European anchovy fishery," Applied Economics, Taylor & Francis Journals, vol. 35(1), pages 63-77.
    2. Lian, Carl & Singh, Rajesh & Weninger, Quinn, 2010. "Fleet Restructuring, Rent Generation, and the Design of Fishing Quota Programs: Empirical Evidence from the Pacific Coast Groundfish Fishery," Staff General Research Papers Archive 31428, Iowa State University, Department of Economics.
    3. Dakhlia, Sami & Marvasti, Akbar, 2022. "Did tradable quota rights really affect fleet size? The case of the Gulf of Mexico reef-fish fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(03), January.
    4. Batstone, C. J. & Sharp, B. M. H., 2003. "Minimum information management systems and ITQ fisheries management," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 492-504, March.
    5. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    6. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    7. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    8. Lian, Carl, 2010. "Fleet Restructuring, Rent Generation and the Design of Individual Transferable Fishing Quota Programs: Empirical Evidence from the Pacific Coast Groundfish Fishery," Staff General Research Papers Archive 31422, Iowa State University, Department of Economics.
    9. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    10. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    11. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    12. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    13. Wade L. Griffin & Ronald D. Lacewell & John P. Nichols, 1976. "Optimum Effort and Rent Distribution in the Gulf of Mexico Shrimp Fishery," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 58(4_Part_1), pages 644-652.
    14. B. Moazzami & F. J. Anderson, 1994. "Modelling Natural Resource Scarcity Using the 'Error-Correction' Approach," Canadian Journal of Economics, Canadian Economics Association, vol. 27(4), pages 801-812, November.
    15. Ragnar Arnason, 1990. "Minimum Information Management in Fisheries," Canadian Journal of Economics, Canadian Economics Association, vol. 23(3), pages 630-653, August.
    16. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    17. Friedman, Benjamin M & Kuttner, Kenneth N, 1992. "Money, Income, Prices, and Interest Rates," American Economic Review, American Economic Association, vol. 82(3), pages 472-492, June.
    18. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    2. Wilton Bernardino & João B. Amaral & Nelson L. Paes & Raydonal Ospina & José L. Távora, 2022. "A statistical investigation of a stock valuation model," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    3. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    4. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    5. Frömmel, Michael & Midiliç, Murat, 2021. "Daily currency interventions in an emerging market: Incorporating reserve accumulation to the reaction function," Economic Modelling, Elsevier, vol. 97(C), pages 461-476.
    6. Tony Chernis & Rodrigo Sekkel, 2018. "Nowcasting Canadian Economic Activity in an Uncertain Environment," Discussion Papers 18-9, Bank of Canada.
    7. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, October.
    8. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    9. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
    10. Mthokozisi Mlilo & Matamela Netshikulwe, 2017. "Re-testing Wagner's Law: Structural breaks and disaggregated data for South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 9(4), pages 49-61.
    11. Aliyu Alhaji Jibrilla, 2016. "Fiscal sustainability in the presence of structural breaks: Does overconfidence on resource exports hurt government’s ability to finance debt? Evidence from Nigeria," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170317-117, December.
    12. Charfeddine, Lanouar & Klein, Tony & Walther, Thomas, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," QBS Working Paper Series 2018/03, Queen's University Belfast, Queen's Business School.
    13. Götz, Thomas B. & Hauzenberger, Klemens, 2018. "Large mixed-frequency VARs with a parsimonious time-varying parameter structure," Discussion Papers 40/2018, Deutsche Bundesbank.
    14. Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
    15. Holmes, Mark J. & Iregui, Ana María & Otero, Jesús, 2021. "The effects of FX-interventions on forecasters disagreement: A mixed data sampling view," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    16. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    17. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    18. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    19. Kevin S. Nell & Maria M. De Mello, 2019. "The interdependence between the saving rate and technology across regimes: evidence from South Africa," Empirical Economics, Springer, vol. 56(1), pages 269-300, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:69:y:2021:i:4:p:491-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.