IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/51.html
   My bibliography  Save this paper

Decision Bounds for Data-Admissible Seasonal Models

Author

Listed:
  • Kunst, Robert M.

    (Institute for Advanced Studies, Vienna)

Abstract

The selection problem among models for the seasonal behavior in time series is considered. The central decision of interest is between models with seasonal unit roots and with deterministic cycles. In multivariate models, also the number of stochastic seasonal factors is a discrete parameter of interest. To enable restricting attention to data-admissible models, a new attempt is made at defining data admissibility. Among data-admissible model classes, statistical decision rules are constructed on the basis of weighting priors and decision-bounds analysis. The procedure is applied to some exemplary economics series. Many univariate series select models without seasonal unit roots but the bivariate experiments enhance the importance of seasonal unit roots with restricted influence of seasonal constants. The framework of decision-bounds analysis offers a convenient alternative to sequences of classical hypothesis tests.

Suggested Citation

  • Kunst, Robert M., 1997. "Decision Bounds for Data-Admissible Seasonal Models," Economics Series 51, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:51
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/1029
    File Function: First version, 1997
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghysels, E. & Hall, A. & Lee, H.S., 1995. "On Periodic Structures and Testing for Seasonal Unit Roots," Cahiers de recherche 9518, Universite de Montreal, Departement de sciences economiques.
    2. Franses, Philip Hans, 1996. "Periodicity and Stochastic Trends in Economic Time Series," OUP Catalogue, Oxford University Press, number 9780198774549.
    3. Lof, Marten & Hans Franses, Philip, 2001. "On forecasting cointegrated seasonal time series," International Journal of Forecasting, Elsevier, vol. 17(4), pages 607-621.
    4. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    5. Franses, Philip Hans & Hoek, Henk & Paap, Richard, 1997. "Bayesian analysis of seasonal unit roots and seasonal mean shifts," Journal of Econometrics, Elsevier, vol. 78(2), pages 359-380, June.
    6. Philip Hans Franses & Robert M. Kunst, 1999. "On the Role of Seasonal Intercepts in Seasonal Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(3), pages 409-433, August.
    7. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    8. Lee, Hahn Shik, 1992. "Maximum likelihood inference on cointegration and seasonal cointegration," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 1-47.
    9. repec:bla:obuest:v:61:y:1999:i:3:p:409-33 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Kotlowski, 2005. "Money and prices in the Polish economy. Seasonal cointegration approach," Working Papers 20, Department of Applied Econometrics, Warsaw School of Economics.
    2. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707.
    3. Robert M. Kunst & Michael Reutter, 2000. "Decisions on Seasonal Unit Roots," CESifo Working Paper Series 286, CESifo.
    4. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    5. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    6. Cubadda, Gianluca & Omtzigt, Pieter, 2005. "Small-sample improvements in the statistical analysis of seasonally cointegrated systems," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 333-348, April.
    7. Darne, Olivier, 2004. "Seasonal cointegration for monthly data," Economics Letters, Elsevier, vol. 82(3), pages 349-356, March.
    8. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    9. Lof, Marten & Lyhagen, Johan, 2002. "Forecasting performance of seasonal cointegration models," International Journal of Forecasting, Elsevier, vol. 18(1), pages 31-44.
    10. Lof, Marten & Hans Franses, Philip, 2001. "On forecasting cointegrated seasonal time series," International Journal of Forecasting, Elsevier, vol. 17(4), pages 607-621.
    11. Gianluca Cubadda, 2001. "Common Features In Time Series With Both Deterministic And Stochastic Seasonality," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 201-216.
    12. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    13. Gianluca Cubadda, 2001. "Complex Reduced Rank Models For Seasonally Cointegrated Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 63(4), pages 497-511, September.
    14. Justyna Wr'oblewska, 2020. "Bayesian analysis of seasonally cointegrated VAR model," Papers 2012.14820, arXiv.org, revised Apr 2021.
    15. Artur C. B. da Silva Lopes & Antonio Montanes, 2005. "The Behavior Of Hegy Tests For Quarterly Time Series With Seasonal Mean Shifts," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 83-108.
    16. Gil-Alana, L.A., 2008. "Testing of seasonal integration and cointegration with fractionally integrated techniques: An application to the Danish labour demand," Economic Modelling, Elsevier, vol. 25(2), pages 326-339, March.
    17. Paap, Richard & Franses, Philip Hans & Hoek, Henk, 1997. "Mean shifts, unit roots and forecasting seasonal time series," International Journal of Forecasting, Elsevier, vol. 13(3), pages 357-368, September.
    18. Lee, Hahn Shik & Siklos, Pierre L., 1997. "The role of seasonality in economic time series reinterpreting money-output causality in U.S. data," International Journal of Forecasting, Elsevier, vol. 13(3), pages 381-391, September.
    19. del Barrio Castro, Tomás & Osborn, Denise R., 2008. "Cointegration For Periodically Integrated Processes," Econometric Theory, Cambridge University Press, vol. 24(1), pages 109-142, February.
    20. Johansen, Soren & Schaumburg, Ernst, 1998. "Likelihood analysis of seasonal cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 301-339, November.

    More about this item

    Keywords

    Unit Roots; Seasonal Cointegration; Model Selection;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.