Nowcasting Finnish GDP growth using financial variables: a MIDAS approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Arturo Estrella & Frederic S. Mishkin, 1998.
"Predicting U.S. Recessions: Financial Variables As Leading Indicators,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
- Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
- Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014.
"Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
- Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.
- Onorante, Luca & Alessi, Lucia & Ghysels, Eric & Potter, Simon & Peach, Richard, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Working Paper Series 1688, European Central Bank.
- repec:kap:iaecre:v:16:y:2010:i:1:p:1-10 is not listed on IDEAS
- Benjamin M. Friedman & Kenneth Kuttner, 1993.
"Why Does the Paper-Bill Spread Predict Real Economic Activity?,"
NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 213-254,
National Bureau of Economic Research, Inc.
- Benjamin M. Friedman & Kenneth N. Kuttner, 1991. "Why does the paper-bill spread predict real economic activity?," Working Paper Series, Macroeconomic Issues 91-16, Federal Reserve Bank of Chicago.
- Benjamin M. Friedman & Kenneth N. Kuttner, 1991. "Why Does the Paper-Bill Spread Predict Real Economic Activity?," NBER Working Papers 3879, National Bureau of Economic Research, Inc.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Ólan T. Henry & Nilss Olekalns & Jonathan Thong, 2004.
"Do stock market returns predict changes to output? Evidence from a nonlinear panel data model,"
Empirical Economics, Springer, vol. 29(3), pages 527-540, September.
- Ólan T. Henry & Nilss Olekalns & Jonathan Thong, 2003. "Do Stock Market Returns Predict Changes to Output? Evidence from a Nonlinear Panel Data Model," Department of Economics - Working Papers Series 868, The University of Melbourne.
- Kuosmanen, Petri & Vataja, Juuso, 2014. "Forecasting GDP growth with financial market data in Finland: Revisiting stylized facts in a small open economy during the financial crisis," Review of Financial Economics, Elsevier, vol. 23(2), pages 90-97.
- Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
- Dionisios Chionis & Periklis Gogas & Ioannis Pragidis, 2010.
"Predicting European Union Recessions in the Euro Era: The Yield Curve as a Forecasting Tool of Economic Activity,"
International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 16(1), pages 1-10, February.
- Gogas, Periklis & Chionis, Dionisios & Pragkidis, Ioannis, 2009. "Predicting European Union recessions in the euro era: The yield curve as a forecasting tool of economic activity," MPRA Paper 13911, University Library of Munich, Germany.
- Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014.
"Forecasting growth during the Great Recession: is financial volatility the missing ingredient?,"
Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," EconomiX Working Papers 2013-19, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Post-Print hal-01385941, HAL.
- Ferrara, L. & Marsilli, C. & Ortega, J-P., 2013. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Working papers 454, Banque de France.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
- Junttila, Juha & Korhonen, Marko, 2011. "Utilizing financial market information in forecasting real growth, inflation and real exchange rate," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 281-301, April.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
- Ioannis Chalkiadakis & Gareth W. Peters & Matthew Ames, 2023. "Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors," Digital Finance, Springer, vol. 5(2), pages 295-365, June.
- Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Pierre Guérin & Massimiliano Marcellino, 2013.
"Markov-Switching MIDAS Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
- Marcellino, Massimiliano, 2011. "Markov-switching MIDAS models," CEPR Discussion Papers 8234, C.E.P.R. Discussion Papers.
- Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
More about this item
Keywords
MIDAS; Nowcasting; Financial markets; GDP;All these keywords.
JEL classification:
- E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
- G00 - Financial Economics - - General - - - General
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-EEC-2020-05-25 (European Economics)
- NEP-ETS-2020-05-25 (Econometric Time Series)
- NEP-MAC-2020-05-25 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bofecr:42020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/bofgvfi.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.