Nowcasting R&D Expenditures: A Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhaoxin Dai & Yunfeng Hu & Guanhua Zhao, 2017. "The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Nick Bloom, 2007.
"Uncertainty and the Dynamics of R&D,"
American Economic Review, American Economic Association, vol. 97(2), pages 250-255, May.
- Nicholas Bloom, 2007. "Uncertainty and the Dynamics of R&D," Discussion Papers 07-021, Stanford Institute for Economic Policy Research.
- Nick Bloom, 2007. "Uncertainty and the Dynamics of R&D," CEP Discussion Papers dp0792, Centre for Economic Performance, LSE.
- Bloom, Nick, 2007. "Uncertainty and the dynamics of R&D," LSE Research Online Documents on Economics 19724, London School of Economics and Political Science, LSE Library.
- Nicholas Bloom, 2007. "Uncertainty and the Dynamics of R&D," NBER Working Papers 12841, National Bureau of Economic Research, Inc.
- Alberto Cavallo & Roberto Rigobon, 2016.
"The Billion Prices Project: Using Online Prices for Measurement and Research,"
Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
- Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," NBER Working Papers 22111, National Bureau of Economic Research, Inc.
- Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
- Bangwen Cheng & Rong He & Hongjin Yang & Jun Yang, 2005. "Quantitative method and model for forecasting R&D expenditures in China," Research Evaluation, Oxford University Press, vol. 14(1), pages 51-56, April.
- Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021.
"Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe & Glenn D. Rudebusch & Boyuan Zhang, 2020. "Optimal Combination of Arctic Sea Ice Extent Measures: A Dynamic Factor Modeling Approach," Papers 2003.14276, arXiv.org, revised Aug 2020.
- Francis X. Diebold & Maximilian Gobel & Philippe Goulet Coulombe & Glenn D. Rudebusch & Boyuan Zhang, 2020. "Optimal Combination of Arctic Sea Ice Extent Measures: A Dynamic Factor Modeling Approach," PIER Working Paper Archive 20-012, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Jakob Edler & Jan Fagerberg, 2017.
"Innovation policy: what, why, and how,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(1), pages 2-23.
- Jakob Edler & Jan Fagerberg, 2016. "Innovation Policy: What, Why & How," Working Papers on Innovation Studies 20161111, Centre for Technology, Innovation and Culture, University of Oslo.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Martin D. D. Evans, 2005.
"Where Are We Now? Real-Time Estimates of the Macroeconomy,"
International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
- Martin D. D. Evans(Georgetown University and NBER), 2005. "Where Are We Now? Real-time Estimates of the Macro Economy," Working Papers gueconwpa~05-05-02, Georgetown University, Department of Economics.
- Evans, Martin D, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," MPRA Paper 831, University Library of Munich, Germany.
- Evans, Martin D.D., 2005. "Where Are We Now? Real-Time Estimates of the Macro Economy," CEPR Discussion Papers 5270, C.E.P.R. Discussion Papers.
- Martin D.D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macro Economy," NBER Working Papers 11064, National Bureau of Economic Research, Inc.
- Romer, Paul M, 1990.
"Endogenous Technological Change,"
Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
- Paul Romer, 1989. "Endogenous Technological Change," NBER Working Papers 3210, National Bureau of Economic Research, Inc.
- Paul M Romer, 1999. "Endogenous Technological Change," Levine's Working Paper Archive 2135, David K. Levine.
- Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012.
"Measuring Economic Growth from Outer Space,"
American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
- Vernon Henderson & Adam Storeygard & David N. Weil, 2009. "Measuring Economic Growth from Outer Space," Working Papers 2009-8, Brown University, Department of Economics.
- J. Vernon Henderson & Adam Storeygard & David N. Weil, 2009. "Measuring Economic Growth from Outer Space," NBER Working Papers 15199, National Bureau of Economic Research, Inc.
- Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
- Paul J. J. Welfens, 2008. "ICT – productivity and economic growth in Europe," Springer Books, in: Paul J. J. Welfens & Ellen Walther-Klaus (ed.), Digital Excellence, pages 13-39, Springer.
- Marcelo C. Medeiros & Henrique F. Pires, 2021. "The Proper Use of Google Trends in Forecasting Models," Papers 2104.03065, arXiv.org, revised Apr 2021.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005.
"Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases,"
Finance and Economics Discussion Series
2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- de Rassenfosse, Gaétan & Jaffe, Adam B., 2018. "Econometric evidence on the depreciation of innovations," European Economic Review, Elsevier, vol. 101(C), pages 625-642.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 373-402, National Bureau of Economic Research, Inc.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024.
"The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
- Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Cambridge Working Papers in Economics 2418, Faculty of Economics, University of Cambridge.
- Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Janeway Institute Working Papers 2413, Faculty of Economics, University of Cambridge.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- Tom Doan, "undated". "RATS programs to replicate Aruoba, Diebold and Scotti JBES 2009," Statistical Software Components RTZ00002, Boston College Department of Economics.
- Leif Anders Thorsrud, 2016.
"Nowcasting using news topics Big Data versus big bank,"
Working Papers
No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
- Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-09-02 (Big Data)
- NEP-CMP-2024-09-02 (Computational Economics)
- NEP-TID-2024-09-02 (Technology and Industrial Dynamics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.11765. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.