Interpretable machine learning for creditor recovery rates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jbankfin.2024.107187
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019.
"Recovery rates: Uncertainty certainly matters,"
Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
- Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," LIDAM Reprints LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
- Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
- Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
- Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
- Acharya, Viral V. & Bharath, Sreedhar T. & Srinivasan, Anand, 2007. "Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries," Journal of Financial Economics, Elsevier, vol. 85(3), pages 787-821, September.
- João Bastos, 2014.
"Ensemble Predictions of Recovery Rates,"
Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
- Joao A. Bastos, 2013. "Ensemble predictions of recovery rates," CEMAPRE Working Papers 1301, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
- Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
- Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
- Jankowitsch, Rainer & Nagler, Florian & Subrahmanyam, Marti G., 2014. "The determinants of recovery rates in the US corporate bond market," Journal of Financial Economics, Elsevier, vol. 114(1), pages 155-177.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021.
"Forecasting recovery rates on non-performing loans with machine learning,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Reprints LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Discussion Papers LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Sudheer Chava & Catalina Stefanescu & Stuart Turnbull, 2011. "Modeling the Loss Distribution," Management Science, INFORMS, vol. 57(7), pages 1267-1287, July.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Bruche, Max & González-Aguado, Carlos, 2010.
"Recovery rates, default probabilities, and the credit cycle,"
Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
- Carlos González-Aguado & Max Bruche, 2006. "Recovery Rates, Default Probabilities and the Credit Cycle," FMG Discussion Papers dp572, Financial Markets Group.
- Bruche, Max & Gonzalez-Aguado, Carlos, 2006. "Recovery rates, default probabilities and the credit cycle," LSE Research Online Documents on Economics 24524, London School of Economics and Political Science, LSE Library.
- Max Bruche & Carlos González-Aguado, 2006. "Recovery Rates, Default Probabilities and the Credit Cycle," Working Papers wp2006_0612, CEMFI.
- Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
- Egon A. Kalotay & Edward I. Altman, 2017. "Intertemporal Forecasts of Defaulted Bond Recoveries and Portfolio Losses," Review of Finance, European Finance Association, vol. 21(1), pages 433-463.
- Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
- Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018.
"Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
- Eric Ghysels & Casidhe Horan & Emanuel Moench, 2012. "Forecasting through the rear-view mirror: data revisions and bond return predictability," Staff Reports 581, Federal Reserve Bank of New York.
- Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
- Mora, Nada, 2015.
"Creditor recovery: The macroeconomic dependence of industry equilibrium,"
Journal of Financial Stability, Elsevier, vol. 18(C), pages 172-186.
- Nada Mora, 2013. "Creditor recovery: the macroeconomic dependence of industry equilibrium," Research Working Paper RWP 13-06, Federal Reserve Bank of Kansas City.
- Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
- Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
- Friedrich Baumann & Ali Kakhbod & Dmitry Livdan & Abdolreza Nazemi & Norman Schürhoff, 2023. "Life after Default: Dealer Intermediation and Recovery in Defaulted Corporate Bonds," Swiss Finance Institute Research Paper Series 23-85, Swiss Finance Institute.
- Edward I. Altman & Vellore M. Kishore, 1996. "Almost Everything You Wanted to Know about Recoveries on Defaulted Bonds," Financial Analysts Journal, Taylor & Francis Journals, vol. 52(6), pages 57-64, November.
- Bastos, João A. & Matos, Sara M., 2022.
"Explainable models of credit losses,"
European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
- João A. Bastos & Sara M. Matos, 2021. "Explainable models of credit losses," Working Papers REM 2021/0161, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022.
"Meta-Learning Approaches for Recovery Rate Prediction,"
Risks, MDPI, vol. 10(6), pages 1-29, June.
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2020. "Meta-learning approaches for recovery rate prediction," LIDAM Discussion Papers LFIN 2020007, Université catholique de Louvain, Louvain Finance (LFIN).
- Gambetti, Paolo & Roccazzella, Francesco & Vrins, Frédéric, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," LIDAM Reprints LFIN 2022011, Université catholique de Louvain, Louvain Finance (LFIN).
- Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
- Barbagli, Matteo & François, Pascal & Gauthier, Geneviève & Vrins, Frédéric, 2024. "The role of CDS spreads in explaining bond recovery rates," LIDAM Discussion Papers LFIN 2024002, Université catholique de Louvain, Louvain Finance (LFIN).
- Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
- Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
- Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
- Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
- Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
- Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019.
"Recovery rates: Uncertainty certainly matters,"
Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
- Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," LIDAM Reprints LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
- Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
- Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
- Chen, Xiaowei & Wang, Gang & Zhang, Xiangting, 2019. "Modeling recovery rate for leveraged loans," Economic Modelling, Elsevier, vol. 81(C), pages 231-241.
- Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.
- Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
- Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
More about this item
Keywords
Interpretable machine learning; Risk management; Recovery rate; Corporate bonds;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:164:y:2024:i:c:s0378426624001043. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.