Forecasting the return volatility of energy prices: A GARCH MIDAS approach
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Afees A. Salisu & Raymond Swaray, 2020. "Forecasting the Return Volatility of Energy Prices: A GARCH-MIDAS Approach," World Scientific Book Chapters, in: Stéphane Goutte & Duc Khuong Nguyen (ed.), HANDBOOK OF ENERGY FINANCE Theories, Practices and Simulations, chapter 3, pages 47-71, World Scientific Publishing Co. Pte. Ltd..
References listed on IDEAS
- Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
- Karali, Berna & Ramirez, Octavio A., 2014.
"Macro determinants of volatility and volatility spillover in energy markets,"
Energy Economics, Elsevier, vol. 46(C), pages 413-421.
- Singh, Aaron & Karali, Berna & Ramirez, Octavio A., 2011. "High Price Volatility And Spillover Effects In Energy Markets," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103593, Agricultural and Applied Economics Association.
- Alanoud Al-Maadid & Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2017.
"Spillovers between food and energy prices and structural breaks,"
International Economics, CEPII research center, issue 150, pages 1-18.
- Al-Maadid, Alanoud & Caporale, Guglielmo Maria & Spagnolo, Fabio & Spagnolo, Nicola, 2017. "Spillovers between food and energy prices and structural breaks," International Economics, Elsevier, vol. 150(C), pages 1-18.
- Alanoud Al-Maadid & Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2015. "Spillovers between Food and Energy Prices and Structural Breaks," CESifo Working Paper Series 5282, CESifo.
- Guglielmo Maria Caporale & Alanoud Al-Maadid & Fabio Spagnolo & Nicola Spagnolo, 2016. "Spillovers between food and energy prices and structural breaks," NCID Working Papers 02/2016, Navarra Center for International Development, University of Navarra.
- Alanoud Al-Maadid & Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2015. "Spillovers between Food and Energy Prices and Structural Breaks," Discussion Papers of DIW Berlin 1466, DIW Berlin, German Institute for Economic Research.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
- Narayan, Paresh Kumar & Liu, Ruipeng, 2015.
"A unit root model for trending time-series energy variables,"
Energy Economics, Elsevier, vol. 50(C), pages 391-402.
- Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Working Papers fe_2015_05, Deakin University, Department of Economics.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Manera, Matteo & Nicolini, Marcella & Vignati, Ilaria, 2016. "Modelling futures price volatility in energy markets: Is there a role for financial speculation?," Energy Economics, Elsevier, vol. 53(C), pages 220-229.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015.
"Has oil price predicted stock returns for over a century?,"
Energy Economics, Elsevier, vol. 48(C), pages 18-23.
- Paresh K. Narayan & Rangan Gupta, 2014. "Has Oil Pirce Predicted Stock Returns for Over a Century?," Working Papers 201446, University of Pretoria, Department of Economics.
- Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Working Papers fe_2015_08, Deakin University, Department of Economics.
- Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017.
"Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets,"
Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.
- Xian, Hui & Gregory, Colson & Michael, Wetzstein, 2015. "Impact of nonrenewable on renewable energy: The case of wood pellets," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196833, Southern Agricultural Economics Association.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Serletis, Apostolos & Xu, Libo, 2016.
"Volatility and a century of energy markets dynamics,"
Energy Economics, Elsevier, vol. 55(C), pages 1-9.
- Apostolos Serletis & Libo Xu, "undated". "Volatility and a Century of Energy Markets Dynamics," Working Papers 2016-29, Department of Economics, University of Calgary, revised 28 Jan 2016.
- Koto, Prosper Senyo, 2015. "Are retail prices of ethanol, gasoline and natural gas in the midwest cointegrated? An asymmetric threshold cointegration analysis," Journal of Economics and Business, Elsevier, vol. 77(C), pages 79-93.
- Omri, Anis, 2014.
"An international literature survey on energy-economic growth nexus: Evidence from country-specific studies,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
- Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," MPRA Paper 82452, University Library of Munich, Germany, revised 30 Jun 2014.
- Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
- Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
- Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
- Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
- Apergis, Nicholas & Baruník, Jozef & Lau, Marco Chi Keung, 2017. "Good volatility, bad volatility: What drives the asymmetric connectedness of Australian electricity markets?," Energy Economics, Elsevier, vol. 66(C), pages 108-115.
- Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
- Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Nguyen, Hoang & Javed, Farrukh, 2023.
"Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach,"
Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
- Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
- Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
- Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023.
"Bayesian predictive distributions of oil returns using mixed data sampling volatility models,"
Resources Policy, Elsevier, vol. 86(PA).
- Virbickaite, Audrone & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian Predictive Distributions of Oil Returns Using Mixed Data Sampling Volatility Models," Working Papers 2023:7, Örebro University, School of Business.
- Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
- Adediran, Idris A. & Swaray, Raymond, 2023. "Carbon trading amidst global uncertainty: The role of policy and geopolitical uncertainty," Economic Modelling, Elsevier, vol. 123(C).
- Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
- Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Marobhe, Mutaju Isaack & Kansheba, Jonathan Mukiza, 2024. "Airlines and climate policy uncertainty: Are the sector's stocks soaring or stalling?," Journal of Air Transport Management, Elsevier, vol. 115(C).
- Mei, Dexiang & Zeng, Qing & Cao, Xiang & Diao, Xiaohua, 2019. "Uncertainty and oil volatility: New evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 155-163.
- Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
More about this item
Keywords
GARCH-MIDAS; energy prices; return volatility; realized volatility; industrial production; inflation;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2017-09-10 (Energy Economics)
- NEP-FOR-2017-09-10 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cui:wpaper:0029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adeoye Omosebi (email available below). General contact details of provider: https://edirc.repec.org/data/ceuibng.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.