IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0510028.html
   My bibliography  Save this paper

Implied Calibration of Stochastic Volatility Jump Diffusion Models

Author

Listed:
  • Stefano Galluccio

    (BNP Paribas)

  • Yann Le Cam

    (University of Evry Val d'Essonne)

Abstract

In the context of arbitrage-free modelling of financial derivatives, we introduce a novel calibration technique for models in the affine- quadratic class for the purpose of contingent claims pricing and risk- management. In particular, we aim at calibrating a stochastic volatility jump diffusion model to the whole market volatility surface at any given time. We numerically implement the algorithm and show that the proposed approach is both stable and accurate.

Suggested Citation

  • Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0510028
    Note: Type of Document - pdf; pages: 40
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0510/0510028.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    2. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    5. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, University Library of Munich, Germany.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    8. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    11. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    12. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    13. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    14. Monika Piazzesi, 2001. "An Econometric Model of the Yield Curve with Macroeconomic Jump Effects," NBER Working Papers 8246, National Bureau of Economic Research, Inc.
    15. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    16. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
    17. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2010. "Option Pricing Under Ornstein-Uhlenbeck Stochastic Volatility: A Linear Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(07), pages 1047-1063.
    2. Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2009. "Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model," Papers 0905.1882, arXiv.org, revised May 2010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    4. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    5. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    6. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    7. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    8. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    9. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    10. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    11. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    12. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2019. "An analytical perturbative solution to the Merton Garman model using symmetries," Papers 1909.01413, arXiv.org, revised Jan 2021.
    13. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    14. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    15. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    16. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    17. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    19. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    20. A. S. Hurn & K. A. Lindsay & A. J. McClelland, 2015. "Estimating the Parameters of Stochastic Volatility Models Using Option Price Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 579-594, October.

    More about this item

    Keywords

    Affine-quadratic models; Option pricing; Model Calibration;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0510028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.