Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
References listed on IDEAS
- Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
- Bollerslev, Tim & Ghysels, Eric, 1996.
"Periodic Autoregressive Conditional Heteroscedasticity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
- Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
- Haldrup, Niels & Nielsen, Morten Orregaard, 2006.
"A regime switching long memory model for electricity prices,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
- Niels Haldrup & Morten O. Nielsen, 2004. "A Regime Switching Long Memory Model for Electricity Prices," Economics Working Papers 2004-2, Department of Economics and Business Economics, Aarhus University.
- Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Wilkinson, Louise & Winsen, Joseph, 2002. "What We Can Learn from a Statistical Analysis of Electricity Prices in New South Wales," The Electricity Journal, Elsevier, vol. 15(3), pages 60-69, April.
- Doornik, Jurgen A. & Ooms, Marius, 2003.
"Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models,"
Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
- Jurgen A. Doornik & Marius Ooms, 2001. "Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models," Economics Papers 2001-W27, Economics Group, Nuffield College, University of Oxford.
- H. Peter Boswijk & Philip Hans Franses, 1996. "Unit Roots In Periodic Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 221-245, May.
- Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011.
"Modelling Electricity Prices: International Evidence,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
- Villaplana Conde, Pablo, 2002. "Modeling electricity prices: international evidence," UC3M Working papers. Economics we022708, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
- I. V. Basawa & Robert Lund, 2001. "Large Sample Properties of Parameter Estimates for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 651-663, November.
- A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
- Carlin, J. B. & Dempster, A. P. & Jonas, A. B., 1985. "On models and methods for Bayesian time series analysis," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 67-90.
- Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003.
"Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices,"
Tinbergen Institute Discussion Papers
03-071/4, Tinbergen Institute.
- Marius Ooms & M. Angeles Carnero & Siem Jan Koopman, 2004. "Periodic Heteroskedastic RegARFIMA models for daily electricity spot prices," Econometric Society 2004 Australasian Meetings 158, Econometric Society.
- C.S. Bos & S.J. Koopman & M. Ooms, 2007.
"Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks,"
Tinbergen Institute Discussion Papers
07-099/4, Tinbergen Institute.
- Charles S. Bos & Siem Jan Koopman & Marius Ooms, 2007. "Long memory modelling of inflation with stochastic variance and structural breaks," CREATES Research Papers 2007-44, Department of Economics and Business Economics, Aarhus University.
- Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
- Isao Ishida & Toshiaki Watanabe, 2009.
"Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model,"
CIRJE F-Series
CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," Global COE Hi-Stat Discussion Paper Series gd08-032, Institute of Economic Research, Hitotsubashi University.
- Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, January.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
- Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, September.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
- repec:dau:papers:123456789/2285 is not listed on IDEAS
- Ana Pérez & Esther Ruiz, 2002.
"Modelos de memoria larga para series económicas y financieras,"
Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
- Pérez, Ana, 2001. "Modelos de memoria larga para series económicas y financieras," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS ds010101, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- Nigel Wilkins, 2004. "Indirect Estimation of Long Memory Volatility Models," Econometric Society 2004 Far Eastern Meetings 459, Econometric Society.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Wilfredo Palma & Mauricio Zevallos, 2004. "Analysis of the correlation structure of square time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 529-550, July.
- Haldrup Niels & Nielsen Morten Ø., 2006.
"Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
- Haldrup; Niels & Morten Oerregaard Nielsen, 2005. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Economics Working Papers 2005-18, Department of Economics and Business Economics, Aarhus University.
- Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
- Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
- Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
- Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
- Kosater, Peter & Mosler, Karl, 2006.
"Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices,"
Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
- Kosater, Peter & Mosler, Karl, 2005. "Can Markov-regime switching models improve power price forecasts? Evidence for German daily power prices," Discussion Papers in Econometrics and Statistics 1/05, University of Cologne, Institute of Econometrics and Statistics.
More about this item
Keywords
Autoregressive fractionally integrated moving average model; Generalised autoregressive conditional heteroskedasticity model; Long memory process; Periodic autoregressive model; Volatility;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2006-01-24 (Energy Economics)
- NEP-ETS-2006-01-24 (Econometric Time Series)
- NEP-FIN-2006-01-24 (Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20050091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.